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Abstract. Fluorescence molecular tomography �FMT� systems
coupled to conventional imaging modalities such as magnetic reso-
nance imaging �MRI� and computed tomography provide unique op-
portunities to combine data sets and improve image quality and con-
tent. Yet, the ideal approach to combine these complementary data is
still not obvious. This preclinical study compares several methods for
incorporating MRI spatial prior information into FMT imaging algo-
rithms in the context of in vivo tissue diagnosis. Populations of mice
inoculated with brain tumors that expressed either high or low levels
of epidermal growth factor receptor �EGFR� were imaged using an
EGF-bound near-infrared dye and a spectrometer-based MRI-FMT
scanner. All data were spectrally unmixed to extract the dye fluores-
cence from the tissue autofluorescence. Methods to combine the two
data sets were compared using student’s t-tests and receiver operating
characteristic analysis. Bulk fluorescence measurements that made up
the optical imaging data set were also considered in the comparison.
While most techniques were able to distinguish EGFR�+� tumors from
EGFR�-� tumors and control animals, with area-under-the-curve
values=1, only a handful were able to distinguish EGFR�-� tumors
from controls. Bulk fluorescence spectroscopy techniques performed
as well as most imaging techniques, suggesting that complex imaging
algorithms may be unnecessary to diagnose EGFR status in these
tissue volumes. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

he identifiable biochemical changes associated with cancer
athologies have made imaging cancer a major focus of ef-
orts to realize the potential of fluorescence molecular tomog-
aphy �FMT�. These efforts have included imaging elevated
nzymatic activity using activatable molecular probes,1–3 en-
anced permeability and retention �EPR� effects using unspe-
ific fluorophores,4 deoxyglucose uptake,5 and cellular protein
tatus using antibody, ligand, or other protein-bound
uorophores.6,7 Imaging strategies that target a biological pro-
ess, such as receptor status, may help identify an effective

ddress all correspondence to Scott C. Davis, Dartmouth College, HB 8000,
anover, NH 03755. Tel: 603-646-9684; Fax: 603-646-3856; E-mail:
cott.C.Davis@Dartmouth.edu, or Brian W. Pogue �same address�. Tel: 603-
46-3861; Fax: 603-646-3856; E-mail: Brian.W.Pogue@Dartmouth.edu.
ournal of Biomedical Optics 051602-
therapy and subsequently monitor the biological changes in-
duced by therapy. These strategies may be employed in pre-
clinical research with the goal of better understanding mo-
lecular signaling or toward clinical translation for diagnostic
imaging.

Since scattering dominates near-infrared �NIR� photon
propagation in tissue, quantifying emitted signals through
more than a few millimeters of tissue is a challenging prob-
lem. However, the availability and sensitivity of optical
probes used in biological research and the spectral separation
capabilities unique to luminescent compounds has sustained
efforts to address the complex imaging problem. To account
for tissue scattering, most FMT systems operate by algorith-
mically fitting the measured data to the diffusion model. Ef-

1083-3668/2010/15�5�/051602/10/$25.00 © 2010 SPIE
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orts to improve the imaging performance of FMT have in-
luded refining imaging geometries,8 exploiting time-
ependent measurements,9–16 extracting highly resolved
pectral data,17,18 developing more accurate photon propaga-
ion models,19 and incorporating information from supple-

ental measurements into the imaging paradigm.3,12,17,20,21

he latter approach is particularly attractive, and experiments
ith new hybrid FMT instruments that operate concurrently
r in sequence with computed tomography �CT� or magnetic
esonance imaging �MRI� have been reported, along with as-
ociated imaging algorithms for combining these bimodal
ata sets. These prior-information-type algorithms were origi-
ally introduced for absorption and scattering tomography
nd showed promise for improved accuracy with the addi-
ional information.22–26 The most common methods to com-
ine data sets involves segmenting the CT or MRI images into
eneral regions based on tissue type and then using the iden-
ified regions to guide the recovery of optical images. Seg-

ented information may be incorporated differently depend-
ng on the accuracy of the segmentation and how closely the
uorescence activity corresponds to the segmented tissue

ypes. In some applications, it may be appropriate to assume
hat fluorescence activity is homogeneous in each segmented
egion and force this constraint in the imaging algorithm.

hile this approach makes no assumptions about the actual
alues in the segmented regions, it does limit the ability to
ecover more subtle changes throughout the imaging volume.
n alternative approach introduces the segmented information

s a filter matrix in the image reconstruction process and thus
s less rigid in its application of spatial priors. While improve-

ents in imaging performance have been implied and anec-
otally reported using these techniques, a full systematic ex-
mination comparing data analysis strategies from a
iagnostic perspective has not been reported and so is exam-
ned here.

In a previous report,7 we demonstrated that preclinical
RI-FMT could be used to diagnose gliomas in vivo based on

pidermal growth factor receptor �EGFR� activity. This trans-
embrane protein is overexpressed in many cancers, and its

ctivation by the epidermal growth factor �EGF� ligand is
ssociated with increased cell proliferation and reduced apo-
tosis and has thus been the focus of substantial cancer re-
earch. In our previously reported study, a fluorophore bound
o EGF was used to distinguish between tumors with high and
ow EGFR status. The analysis was completed using one em-
odiment of an MR-guided FMT algorithm—namely, the
oft-priors approach, which introduces the internal tissue
tructures by implementing a spatially dependent regulariza-
ion parameter in the image reconstruction algorithm. In the
tudy reported herein, we reexamine these data to assess di-
gnostic performance of the optical data using a variety of
maging and bulk spectroscopy approaches and attempt to
uantify improvements in diagnostic capacity provided by
patially guided FMT.

Methods
.1 Cell Lines
he two cell lines investigated in this study were the rat 9L
liosarcoma cell line transfected with green fluorescent pro-
ein �GFP� and the human glioma cell line U251. Cells were
ournal of Biomedical Optics 051602-
grown in Dulbecco’s Modified Eagle’s Medium �DMEM;
Mediatech, Inc., Manassas, Virginia, Cat. # 10-013-CV�
supplemented with penicillin �100 units /ml�-streptomycin,
100 �g /ml �HyClone, Logan, Utah, Cat. # SV30010�. In
vitro studies of the tumor cells have shown that U251 cells
have a 20-fold higher expression of EGFR than 9L cells.27 In
this study, U251 tumors that overexpress EGFR are referred
to as EGFR��� tumors, while the negative control 9L line
tumors are termed EGFR�-� tumors. Cells were grown to 80%
confluency in culture, trypsinized, and brought into solution in
phosphate buffered saline �PBS� at 5�107 cells /ml in prepa-
ration for injection.

2.2 Animal Preparation
All procedures using animals were conducted under protocols
approved by the Institutional Animal Care and Use Commit-
tee �IACUC� at Dartmouth. Animal subject preparations for
the nude mice used in this study have been described
previously7 and are summarized here. Mice were
6 to 7 week-old male athymic NCr-nu/nu nude mice �strain
01B74� purchased through the NIH Animal Procurement Pro-
gram. All mice underwent intracranial surgery prior to imag-
ing. During the surgical procedure, the skin on the skull was
prepared using betadine. Five �l of the cell suspension were
injected slowly via a 1-mm burr hole in the skull with a 25-ga
needle at 2 mm anterior and 3 mm to the left of the bregma.
Control mice underwent sham-surgery and were injected with
PBS only. Tumors grew for 14 to 23 days, and each tumor-
bearing animal was imaged with gadolinium-enhanced MRI
�Gd-MRI� at least two days prior to the MRI-FMT scans.
Only animals with visible Gd-enhanced features in the brain
were included in the study. The final distribution of animals
used in the study was six mice with U251 tumors, five with
9L tumors, and four in the control group. Forty-eight hours
prior to MRI-FMT scanning, each animal was administered 1
nmole of Licor IRDye 800CW EGF �Licor Biosciences, Lin-
coln, Nebraska� reconstituted per manufacturer’s directions
into the tail vein. This imaging agent consists of an NIR fluo-
rescence dye conjugated to the EGF ligand, which has high
affinity for the associated EGFR.

2.3 MRI-FMT Imaging System
The hybrid MRI-optical system has been detailed in previous
publications,7,17,18 and a brief overview is included here. A
diagram of the system is provided in Fig. 1�a�, which illus-
trates the spectroscopic FMT system integrated into a Philips
3 T clinical MRI. This integrated platform allows simulta-
neous optical and MR scanning that facilitates straightforward
integration of data between the modalities. The optical detec-
tion component consists of eight spectrometers, each with
cooled imaging CCD sensors, which are coupled to the tissue
surface through long optical fiber bundles. A specialized ro-
dent MRI coil, shown in Fig. 1�b�, positions the optical fibers
in a circular ring around the animal’s head. The bifurcated
branch of the fibers was used to illuminate each channel se-
quentially with a 690-nm laser diode, while the remaining
seven channels act as light pickups to the spectrometers. Both
fluorescence emission and excitation spectra were measured
for each source–detector pair. In this configuration, a total of
September/October 2010 � Vol. 15�5�2
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6 emission and 56 excitation measurements �eight sources by
even detectors� were acquired for each animal.

During MRI-FMT scanning, an anesthetized �1.5% isoflu-
ane, 1 L /min oxygen� animal was positioned in the special-
zed rodent coil and the fiber terminals moved inward to con-
act the tissue. Scout MRI scans were used to locate the plane
f the fibers with respect to the brain and/or tumor �if visible
re-Gd contrast�. This procedure was repeated until the ani-
al alignment was satisfactory. Once the animal was posi-

ioned, both optical and MRI scans were initiated. The MRI
cquisition protocol included a T1-weighted turbo-spin-echo
TSE� pre-Gd contrast followed by T2-weighted TSE, intrap-
ritoneal gadolinium-DTPA �Magnevist, Bayer Healthcare
harmaceuticals, Wayne, New Jersey� administration
0.03 ml�, and finally another T1-weighted TSE post-Gd con-
rast. Besides scout scans, all MRI image slices were in the
oronal direction. The optical measurements were completed
ithin the 23 min required for the MRI sequences, and the

ig. 1 Diagram of the MRI-FMT scanner illustrates the contact-mode
onfiguration of eight optical fibers around the head �a�. The fiber
rray installed in the RF coil is shown in �b�. A close-up 3-D rendering
f the head �blue� and brain �yellow� of one of the animals is shown in
c�. The red spheres mark the location of the eight spectroscopy fibers
ncircling the head in a single plane. A T1-weighted coronal MR im-
ge corresponding to this fiber plane is shown in �d�, overlain with
lue and yellow regions to emphasize the location of the brain. Once

his plane is selected for a given animal, the image is segmented into
issue regions broadly defined as brain, abnormal structures in the
rain, and the region outside the brain. Examples of segmented re-
ions for a mouse with a U251 tumor, a 9L tumor, and no tumor are
hown in �e�, �f�, and �g�, respectively. �Color online only.�
ournal of Biomedical Optics 051602-
entire procedure including anesthetization could be completed
in about 30 min.

Figure 1�c� shows a portion of a mouse head rendered
from an MR image stack, with the brain shown as a rendered
surface in yellow. The red spheres surrounding the head lie in
a coronal plane and mark the location of the optical fibers.
The 2-D image slice corresponding to this plane, shown in
Fig. 1�d�, represents the MRI-FMT image plane. With the
exception of control mice, only animals with Gd contrast-
enhancement in this plane were included in the analysis. For
MRI-FMT imaging, the image was segmented into regions of
broadly defined tissue types using MIMICS image processing
software �Materialise Medical Software, Leuven, Belgium�.
Tissues were delineated as brain, the area outside the brain,
any gadolinium-enhanced features in the brain, and any other
abnormal-looking features not associated with Gd-
enhancement. Since no abnormal features were evident in the
brains of control animals, only the brain and area surrounding
the brain were included in the segmentation. Examples of
segmented MR images from each group �U251, 9L, and con-
trol� are shown in Figs. 1�e�–1�g�, respectively, where the
color overlays delineate different regions. Similar segmented
masks were produced for each animal and used to generate
finite element method �FEM� meshes compatible with the im-
aging algorithms.

2.4 Optical Image Reconstruction
FMT image recovery involves fitting calculated data from a
light propagation model to the measured data. The diffusion
approximation for photon propagation in tissue is the most
commonly used model for FMT imaging and was used in this
study. These algorithms recover images of fluorescence yield,
which is the product of the fluorophore quantum yield, �, and
the absorption coefficient of the fluorescence compound at the
excitation wavelength, �af. While early FMT systems were
designed as stand-alone imaging systems, the latest generation
of research FMT instruments are hybrid systems integrated
with established imaging modalities. Paralleling the advances
in hardware design, several methods to synthesize the dual
data sets have been explored. Two of these methods are con-
sidered herein.

In this study, four diffusion-based recovery techniques
were investigated, each representing a different degree to
which the segmented MRI masks guide the imaging algo-
rithm. The general formulation used to match the measured
and calculated fluence rates, � fl

Meas and � fl
C, respectively, and

thus recover fluorescence yield is

���af = �Jfl
TJfl + �I�−1Jfl

T�� fl
Meas − � fl

C� , �1�

where J is the Jacobian matrix with dimensions of number of
nodes in the FEM mesh �NN� by number of measurements, �
is the regularization parameter, and I is the identity matrix.17

The regularization parameter, �, is a fixed value multiplied to
the maximum of the diagonal of JTJ �Ref. 17� and was deter-
mined empirically with a small set of animal images. Once
determined, the same initial value for � was used for all ani-
mals in the study for consistency. The classical image recon-
struction technique assumes that only the shape of the tissue
surface is known. A variety of methods can be used to render
the surface features that do not require medical imaging
September/October 2010 � Vol. 15�5�3
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evices,5,28,29 but in this study, the surfaces were extracted
irectly from the MR images. For the purposes of this report,
e have termed this classical FMT approach that makes no
se of internal tissue information the “unguided” reconstruc-
ion technique.

Internal tissue structure was incorporated into the algo-
ithm in two ways. The hard-priors technique assumes that all
egmented regions have homogeneous values of fluorescence
ield and thus puts complete trust in the quality of the seg-
ented MR images. The formulation is straightforward and

ere is accomplished by reducing the Jacobian matrix based
n tissue regions;

J̃ = JK , �2�

here K is a matrix with dimensions NN�NR, NN is the
otal number of nodes in the mesh, and NR is the number of
issue regions in the segmented mask. For regions 1 to N, K is
ritten:

K = �
k1,1 k1,2 ¯ k1,NR

k2,1 k2,2 ¯ k2,NR

] ] � ]

kNN,1 kNN,2 ¯ kNN,NR

� , �3�

here

kj,n = �1, j � Rn

0, j � Rn
� , �4�

nd Rn represents region n. The dimension of the reduced

acobian matrix, J̃, is number of measurements by number of
egions. The update equation for fluorescence yield is then
odified to the following:

���af = �J̃fl
T J̃fl + �I�−1J̃fl

T�� fl
Meas − � fl

C� . �5�

Another spatially guided approach introduces the seg-
ented information through a spatially varying regularization

arameter and is termed the “soft-priors” or “L-matrix”
pproach.17,30 The updated formulation is written as

���af = �Jfl
TJfl + �LTL�−1Jfl

T�� fl
Meas − � fl

C� , �6�

here the elements in matrix L associated with nodes in a
iven tissue region are assigned the same value. The L-matrix
epresents an NN�NN Laplacian-type structure, the diagonal
f which is Li,i=1, where i and j are nodal indices. If matrix
lements are associated with nodes in the same tissue region
i.e., nodes i and j are in the same region� containing n nodes,

i,j =−1 /n. Elements associated with nodes that are not in the
ame tissue region are assigned Li,j =0.

The fourth diffusion model–based technique investigated
n this study is formulated on the assumption that the fluores-
ence yield value in the entire head is homogeneous. Like the
nguided technique, the geometry of the imaging domain is
ssumed known, and internal tissue information is not in-
luded in the algorithmic reconstructions; however, all nodal
alues of fluorescence yield are locked to the same value. This
homogeneous fitting” technique is analogous to a single-
egion hard-priors reconstruction.
ournal of Biomedical Optics 051602-
All four diffusion-based reconstruction techniques used in
the study are summarized in the first four rows of Table 1. A
critical consideration when implementing these techniques is
the estimation of the optical properties �absorption and re-
duced scattering coefficients, �a and �s

/� that form the foun-
dation of the light propagation model. Typically, these values
are not recovered explicitly and thus must be estimated. For
the hard- and soft-priors techniques, the segmented MR im-
ages were used to assign heterogeneously distributed optical
properties based on two broad tissue types, the brain and all
tissue outside the brain. The optical properties in the brain
region were estimated from values for rat brain published in
the literature31: �ax=0.03 mm−1, �sx

/ =2.25 mm−1 at the ex-
citation wavelength and �am=0.03 mm−1, �sm

/ =2.75 mm−1

at the emission wavelength. Suspected tumor regions in the
brain were assigned these values as well. The tissue surround-
ing the brain is a mixture of bone, muscle, adipose tissue, and
skin, all of which were lumped into a single homogeneous
region with estimates of �ax,m=0.01 mm−1 and �sx,m

/

=1 mm−1 at the exciting and emitting wavelengths. Since the

Table 1 Descriptions of the eight data processing techniques consid-
ered in this study.

Analysis
technique

Diffusion
model? Description

Hard-priors
reconstruction

Yes Segmented tissue regions from the MR
image are assumed homogeneous.

Soft-priors
reconstruction

Yes Segmented tissue regions from the MR
image are introduced as a
discontinuous regularization matrix in
the imaging algorithm.

Unguided
reconstruction

Yes No internal structure from the
segmented MR image is introduced in
the imaging algorithm. The outer
boundary of the tissue is known.

Homogeneous
fitting

Yes The fluorescence distribution is assumed
to be homogeneous in the entire
domain, and the outer boundary of the
tissue is known. This is essentially a
single-region hard-prior reconstruction.

Fluorescence-to-
excitation ratio
�mean�

No Mean of the fluorescence-to-excitation
measurement ratios for all
source-detector positions.

Fluorescence-to-
excitation ratio
�max�

No Maximum value of all fluorescence-
to-excitation ratios for a given animal.

Fluorescence-to-
autofluorescence
ratio �sum�

No Sum of the fluorescence-to-
autofluorescence measurement ratios for
all source-detector positions.

Fluorescence-to-
autofluorescence
ratio �single
measurement�

No A single fluorescence-to-
autofluorescence measurement ratio.
The ratio for the source-detector
measurement from the top of the head
to the bottom of the head was chosen
�dorsal to ventral source-detector pair�.
September/October 2010 � Vol. 15�5�4
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nternal distribution of tissue types in the unguided and ho-
ogeneous fitting algorithms were assumed unknown, the op-

ical properties for these techniques were assumed to be ho-
ogeneous throughout the head ��ax=0.02 mm−1, �sx

/

1.88 mm−1, �am=0.02 mm−1, and �sm
/ =1.63 mm−1�. These

alues are the averages of the properties in the two tissue
egions used in the hard- and soft-priors implementations.

Spectra measured for each source–detector combination
ere calibrated and then preprocessed with a simple spectral
nmixing algorithm described in previous publications.17,18

his procedure fits premeasured fluorescence spectra of the
maging agent and tissue autofluorescence to the measured
ata and thus decouples these signals from one another. Once
ecoupled, the unmixed dye fluorescence spectra were inte-
rated and input into the imaging algorithms.

.5 Bulk Fluorescence Spectroscopy
o compare the diagnostic capacity of MRI-FMT to simpler
ptical spectroscopy methods, the same optical data used in
he image recovery algorithms were also analyzed indepen-
ent of the imaging problem. These spectroscopy techniques
onsider the measured spectra alone and therefore do not re-
uire geometry-specific FEM modeling or diffusion approxi-
ation computations. The four different approaches consid-

red in this study involved calculating the ratios of the
nmixed dye fluorescence intensity with either the excitation
ntensity or the unmixed autofluorescence signal. Descriptions
f each method are included in the last four rows of Table 1.
he diagnostic performance of the four diffusion model–
ased techniques and the four bulk spectroscopy techniques
ere compared using one-tailed student’s t-tests and receiver
perating characteristic �ROC� curves.

Results
.1 MRI-FMT Imaging
xamples of MRI-FMT images for three mice are shown in
ig. 2. The first column shows images of a mouse with a
251 tumor, the second column shows a mouse with a 9L

umor, and the third column shows images from a control
ouse. Each row corresponds to images recovered using a

ifferent reconstruction technique. Images in row I were re-
overed using hard-priors reconstructions; row II, soft-priors
econstructions; and row III, unguided reconstructions. For
llustrative purposes, the color scales are consistent for each
xample animal �columns� but vary between subjects.

Examining the images collectively reveals dramatic differ-
nce between the U251 animal and the other two animals for
ll three imaging techniques. Considering the images in row I,
he maximum fluorescence yield value in the U251 animal is
pproximately tenfold higher than in either the 9L or control
nimals. The elevated fluorescence activity was well localized
n the Gd-enhanced regions of the brain with the U251 tumor,
ndicating that the fluorescence activity is primarily in the
umor region. This is consistent for the hard- and soft-priors
econstructions for this mouse, which produced similar quali-
ative results. The unguided reconstruction image for the
251 animal shown in row III produced elevated levels of
uorescence in the same general region, although the spatial
esolution and contrasts were substantially lower than pro-
ournal of Biomedical Optics 051602-
duced by the hard- and soft-priors algorithms. Levels of fluo-
rescence yield in the 9L tumor were lower than in the head,
indicating poor tumor-to-normal tissue contrast, even when
MRI data was used in the imaging algorithms. The unguided
solution indicated no tendency toward elevated fluorescence
in the Gd-enhanced region, unlike the results in the U251
animal. Images of the control animal also show relatively low
overall levels of fluorescence activity and low contrasts
throughout the entire head.

The examples in Fig. 2 are representative of the entire
image set, demonstrated by Fig. 3, which presents images of
fluorescence yield recovered using the soft-priors reconstruc-
tion for all animals included in the study. The images are
plotted on a consistent color scale, which reveals the large
differences between the animal groups. According to the im-
ages, U251 tumors produce much higher levels of fluores-
cence activity than found in 9L or control animals, while there
is no noticeable difference between the 9L and control ani-
mals themselves. Similar image sets were generated for the
hard-priors and unguided reconstruction techniques but are
not included here for the sake of brevity.

The fluorescence activity was highest in the Gd-enhanced
region of the head in all but one of the animals in the U251
group. In this animal �the last image in the U251 column of
Fig. 3�, the elevated region of fluorescence activity corre-
sponded to a dark, abnormal feature in the brain that was
segmented during the MR image preprocessing. The Gd-
enhanced region, circled in blue, produced lower fluorescence
activity than the maximum value, but higher activity than the
brain background. �Color online only.� This value was also

Fig. 2 Representative images of fluorescence yield overlying the cor-
responding MR images. Each column provides results for a single ani-
mal from one of the three mouse populations �U251 tumors, 9L tu-
mors, and controls, respectively�. The rows show images recovered
using the hard-prior technique �I�, the soft-prior technique �II�, and an
unguided reconstruction technique that operates under the assump-
tion that only the outer boundary was known �III�. Given the wide
range of recovered values between subjects, the color scales were
kept consistent only within the image set for each animal. Transpar-
ency levels were varied between images to ensure that the MR images
are easily discerned through the optical image overlay. �Color online
only.�
September/October 2010 � Vol. 15�5�5
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igher than all recovered values in the 9L and control animals.
To quantify the imaging results, the mean fluorescence

ield value in the region defined by Gd-enhancement was
alculated for all tumor-bearing animals. This corresponds to
he light blue region in the example shown in Fig. 1�e� and the
ight pink region in the example in Fig. 1�f�. �Color online
nly.� Since no Gd-enhancement was observed in the brains
f control mice, the mean value in the entire brain region was
sed. These values are compiled in the box and whisker plots
resented in Fig. 4 for the hard-priors, soft-priors, and un-
uided reconstructions �Figs. 4�a�, 4�b�, and 5�c�, respec-
ively�. The values plotted in Fig. 4�d� were recovered using
he homogeneous fitting approach, which essentially averages
he fluorescence activity over the entire domain. These plots
how reasonable separation between U251 and the other two
roups, although the difference between 9L tumors and con-
rol animals is less obvious. P-values between the animal
roups calculated using a one-tailed student’s t-test are tabu-
ated in the first four rows of Table 2. The differences between
251 tumors and the other two groups were statistically sig-
ificant for all four diffusion-based recovery algorithms.
owever, only the hard-priors imaging technique revealed a

tatistically significant difference between the 9L tumor-
earing and control groups.

.2 Bulk Fluorescence Spectroscopy
igure 5 shows the results of the spectral unmixing algorithm

n three example animals, each from a different group. The

ig. 3 Images of fluorescence yield for all animals in the study recov-
red using the soft-priors image reconstruction technique. The col-
mns correspond to the U251, 9L, or control mouse populations. All
mages are plotted on the same color scale. �Color online only.�
ournal of Biomedical Optics 051602-
source–detector measurement pair used in these examples was
between the top of the head and the opposing detector below
the jaw �dorsal to ventral source–detector pair�, illustrated in
panels �a� through �c� for the three mice. For illustrative pur-
poses, the sensitivity fields for the source–detector pair over-
lie the MR images. Also included are outlines of the tumor
region as defined by Gd-contrast. The solid lines in the graphs
in panels �d� through �f� show the measured spectrum for each
animal. The sharp jump in intensity at 720 nm corresponds to
the cut-on wavelength of the long-pass filter positioned at the
entrance of the spectrometers. The results of the spectral un-
mixing for each animal are plotted in �g� through �i� and il-
lustrate the relative contributions of the imaging agent fluo-
rescence and the tissue autofluorescence. In all cases, the
tissue autofluorescence is the dominant signal, revealing the
importance of the spectral unmixing process. The sums of the
unmixed basis spectra are plotted as fitted spectra in �d�
through �f� �dashed lines�, demonstrating an excellent match
between measured and fitted data.

Visual inspection of the results in Fig. 5�g�–5�i� suggests
that the spectra alone contain diagnostic information, without
the need for light modeling and image reconstruction. While
the absolute intensities of the measured spectra are not corre-
lated with the presence of tumors in these examples, the rela-
tive intensity of the dye fluorescence to the autofluorescence,
or perhaps the excitation intensity �not shown�, may well cor-
relate with the presence of a particular tumor type.

Fig. 4 Box and whisker plots of fluorescence yield calculated using
diffusion-based reconstruction techniques. The values in �a� through
�c� were determined by calculating the mean value of fluorescence
yield in the region corresponding to gadolinium enhancement for ani-
mals with tumors and the mean value in the entire brain region for
control animals that showed no gadolinium enhancement. The panels
show the results for hard-prior reconstructions �a�, soft-prior recon-
structions �b�, and the unguided reconstruction �c�. Values in �d� were
recovered using homogeneous fitting, which assumes that the fluores-
cence activity distribution is homogeneous through the entire head of
a mouse subject. Note that the y-axis values are plotted on a different
scale for each panel.
September/October 2010 � Vol. 15�5�6
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The box and whisker plots and corresponding p-value cal-
ulations in Fig. 6 and Table 2, respectively, confirm these
bservations. In all cases, significantly higher ratio values
ere calculated for the U251 group relative to the 9L and

ontrol groups. Also, two ratio-based techniques produced
tatistically significant differences between 9L and control
nimals.

.3 ROC Analysis
he results compiled in Tables 2 and 3 indicate that nearly all
ethods identify the presence of U251 tumors versus 9L tu-
ors or controls. Area-under-the-curve �AUC� values deter-
ined from ROC analysis for U251 versus control animals

how perfect diagnostic performance for all imaging methods
nd bulk spectroscopy methods. Similar performance was ob-
erved between U251 and 9L tumors, with one exception. The
UC determined from the sum of the fluorescence-to-

utofluorescence ratios slipped to 0.93, suggesting that this
imple data processing method is a less powerful diagnostic
echnique.

ig. 5 Raw optical spectra measured with the MRI-FMT are prepro-
essed using a simple spectral fitting algorithm. Examples of measured
uorescence spectra are shown in �d� through �f� �solid line� for U251,
L, and control mice, respectively. These spectra correspond to a
ource-detector pair that transmits light from the top of the head to the
ottom, as shown in �a� through �c�. For illustrative purposes, the
ensitivity values between the source and detector are plotted on the
orresponding MR images, and an outline of the tumor region as de-
ned by the gadolinium contrast enhancement is included to demon-
trate the extent to which the tumor lies in the sensitivity field. Prere-
orded spectra of the fluorescent probe and tissue autofluorescence
rom mice are used to decouple the signals originating from tissue
utofluorescence and the optical probe itself. The results of this pro-
ess are shown in �g� through �i�, and the fitted spectra are compared
o the measured spectra in �d� through �f�.
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Differentiating subjects with 9L tumors from healthy sub-
jects proved to be more difficult for all methods. Three tech-
niques produced statistically significant differences between
these groups; the hard-priors imaging technique and the maxi-
mum and mean of the fluorescence-to-excitation spectroscopy
ratios. These statistical differences translated into reasonably
reliable diagnostic performance with AUC values of 0.95, 0.9,
and 0.85 for the imaging technique, and maximum and mean
fluorescence-to-excitation ratio spectroscopy methods, respec-
tively. The soft-priors imaging technique reported the poorest
diagnostic performance between these groups, as the AUC
value was just over 0.55, indicating that the groups were
nearly indistinguishable. The unguided and homogeneous fit-
ting reconstructions also demonstrated poor diagnostic char-
acteristics with an AUC=0.65 for both methods. All spectro-
scopic methods produced AUC values over 0.8 for the 9L
versus control tests.

4 Discussion
All techniques considered in this study provided excellent dis-
crimination between animals with U251 tumors and controls,
and between animals with the two different tumor lines. These
results are consistent with in vitro studies demonstrating sig-
nificant differences in EGFR expression between U251 and
9L tumor lines.27 Diagnosing 9L tumors from controls was
more difficult for most methods, and only three of the eight
techniques produced statistically significant differences be-
tween these groups. While EGFR expression in 9L tumor cells
has been shown in vitro to be relatively low compared to the
U251 line, 9L tumors removed from animals after

Table 2 p-values from one-tailed student’s t-test.

Data processing
technique

U251 �6�
versus
9L �5�

U251 �6�
versus

controls �4�

9L �5�
versus

controls �4�

Hard-priors
reconstruction

0.019* 0.024* 0.0053*

Soft-priors
reconstruction

0.0067* 0.012* 0.40

Unguided
reconstruction

0.010* 0.016* 0.12

Homogeneous fitting 0.021* 0.032* 0.35

Fluorescence-to-
excitation ratio
�mean�

0.023* 0.022* 0.043*

Fluorescence-to-
excitation ratio �max�

0.017* 0.017* 0.04*

Fluorescence-to-
autofluorescence ratio
�sum�

0.020* 0.0084* 0.052

Fluorescence-to-
autofluorescence ratio
�single measurement�

0.012* 0.0067* 0.090

Asterisks indicate statistical significance �p-value below 0.05�.
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uorescence-tagged EGF administration do show fluores-
ence contrast compared to normal brain tissue. Thus, differ-
nces between these groups, however modest, are expected.
dentifying these differences was highly dependent on the
ata processing technique used, suggesting that some tech-
iques provide more sensitive and specific characterization.
pecifically, the hard-priors imaging technique provided the
est discrimination between these animals. Also effective
ere two bulk spectroscopy methods that used the ratio of the
uorescence emission to the excitation intensity.

The power of the bulk spectroscopy techniques is illus-
rated in the examples shown in Fig. 5. While the absolute
ntensity of the measured spectra varies widely between the
nimals, the absolute and relative intensities of the unmixed
ye fluorescence from visual inspection alone seems to corre-
ate with tumor presence and type. The overall ROC perfor-

ance of all spectroscopic techniques confirms this observa-
ion and indicates that even single spectrum measurements
ontain significant diagnostic information. A particularly in-
eresting result is that the ratio of dye fluorescence to autof-
uorescence calculated for a single measurement through the
ead reported perfect diagnosis of the U251 tumors. The abil-
ty of this method to distinguish 9L tumors from controls was
lso better than most diffusion-modeling techniques as deter-
ined by ROC analysis. This method is particularly attractive

ig. 6 Box and whisker plots of different measurement ratios. The pl
verage �b� of all fluorescence-to-excitation ratios for a given anima
uorescence-to-autofluorescence ratios for each animal. Using this r
nsures that the numerator and quotient are perfectly calibrated to one
ent point �shown in Fig. 2� for each animal was used to produce th

cale for each panel.
ournal of Biomedical Optics 051602-
because it is derived from a single measurement and does not
require a separate excitation measurement, much less MRI
scanning, FEM mesh generation, or light propagation model-
ing. Also, the numerator and denominator of the ratio are
extracted from the same spectrum and therefore are perfectly
calibrated to one another, making the data processing particu-
larly robust.

Fluorescence spectroscopy measurements acquired in this
study likely benefited from the MRI-guided alignment proce-
dures used to ensure that the fiber plane intersected at least a
portion of the tumor bulk. However, in many cases, the tumor
was not visible in the pre-Gd images used for alignment, and
thus these images were used only to confirm that the fiber
plane intersected as close to the axial midpoint of the brain as
possible. Thus, it is unclear as to whether a nonguided mea-
surement system designed to ensure repeatable fiber position-
ing would provide similar performance, although we suspect
this is the case. If fiber positioning in an unguided system has
a major impact on tissue diagnosis, protocols that sample sev-
eral locations through the head and either use the maximum
ratio values to identify an appropriate measurement location
or use the maximum ratio value itself may readily be imple-
mented. These protocols would likely promote repeatable and
reliable tissue diagnosis.

the top panels were determined by calculating either the sum �a� or
plot in �c� contains data determined by calculating the sum of the
minates the need to measure the excitation intensity separately and
er. Last, the fluorescence-to-autofluorescence ratio of single measure-
ts plotted in �d�. Note that the y-axis values are plotted on a different
ots in
l. The
atio eli

anoth
e resul
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The data suggest that bulk fluorescence spectroscopy pro-
ides diagnostic performance similar to that of MRI-FMT im-
ging. Most of these simple techniques showed perfect dis-
riminating power between tumor lines and between the U251
nd control groups. The diagnostic power of the spectroscopic
ata for these tumor lines was first suggested in a study by
ibbs-Strauss et al.,27 which used the fluorescence-to-

xcitation ratios normalized to values of a control group using
he same optical detection system as used herein. Even with
he extra normalization procedure, the ROC performance re-
orted in the previous study was lower than what is reported
ere. The discrepancy is likely attributable to a modification
f the fiber positioning system between the two studies. The
riginal interface did not ensure adequate fiber contact with
he animal’s head and was not optimized to absorb stray light
ignals. The new interface, shown in Fig. 1�b�, eliminates the
tray light issue and provides reliable contact between the
ber and tissue surface. This modification produced dramatic

mprovements in the imaging capabilities and seems to have
lso positively impacted the diagnostic power of the spectro-
copic measurements.

The previously reported study and system modifications
otwithstanding, these results are rather surprising and sug-
est that under the experimental conditions used here, FMT
nd MRI-FMT hold little advantage over simple bulk tissue
pectroscopy for diagnosing EGFR status in these orthotopic
rain tumors. Due to the practical and algorithmic complexi-
ies and uncertainties involved with model-based imaging,
pectroscopy techniques may be preferred in applications with
roven diagnostic performance. While diffusion-based algo-
ithms are commonly used for small animal imaging, accurate

Table 3 Area-under-curve values from ROC analysis.

ata processing
echnique

U251 �6�
versus
9L �5�

U251 �6�
versus

controls �4�

9L �5�
versus

controls �4�

ard-priors
econstruction

1 1 0.95

oft-priors
econstruction

1 1 0.55

nguided
econstruction

1 1 0.65

omogeneous fitting 1 1 0.65

luorescence-to-
xcitation ratio
mean�

1 1 0.85

luorescence-to-
xcitation ratio �max�

1 1 0.9

luorescence-to-
utofluorescence ratio
sum�

0.93 1 0.85

luorescence-to-
utofluorescence ratio
single measurement�

1 1 0.8
ournal of Biomedical Optics 051602-
modeling of light propagation through these small, heteroge-
neous volumes is challenging. More accurate models have
been developed,19,32 although they have not been widely used
in animal imaging to date. The modeling problem is also sub-
ject to the effects of estimating the tissue optical properties
used in the models, as most FMT systems do not recover
these values explicitly. In the paradigm used in this study,
literature values were assigned to two large tissue regions;
however, the values used may be substantially off of true
values, a reality that is difficult to test or validate in each
mouse. Also, optical properties in tissue are far more hetero-
geneously distributed than the modeling used in this study.
Incorrect estimation of optical properties is likely one of the
largest sources of uncertainty in the imaging problem. Other
contributions include uncertainty in the MR image segmenta-
tion and using a 2-D model rather than a full volumetric re-
covery procedure.

It is unlikely that the diagnostic performance reported here
can be directly extrapolated to different tissue volumes and
optical probes. The brain is unique in producing high levels of
fluorescence contrast with very low autofluorescence in the
relevant wavelength range. Also, the tissue volumes sampled
were relatively small and most of the tumors occupied a rela-
tively large region of the sampled volume. Diagnoses in larger
tissue volumes should favor imaging techniques, since these
volumes will generally adhere more closely to the diffusion
model. Measuring through larger volumes also amplifies the
effects of tissue scattering, making spectroscopic measure-
ments less specific and therefore more difficult to interpret.
The trade-offs between the tissue volume size and geometry,
tumor size and depth, tissue optical properties, and drug con-
trast will affect whether imaging is necessary for a particular
diagnostic test. Until these limits have been established, trans-
mission spectroscopy based on data ratios should be consid-
ered for each application under study.

5 Conclusion
All imaging and fluorescence spectroscopy analysis tech-
niques provide excellent potential for diagnostic classification
of EGFR��� tumors in vivo. That spectroscopic measure-
ments alone provide equivalent classification to MRI-guided
FMT suggests that MRI-FMT may not necessarily provide
improvements over nonguided FMT or even bulk fluorescence
spectroscopy, at least for diagnosing EGFR status in brain
tumors. Hybrid imaging is still required when the location of
the lesion is uncertain, as knowing the suspected volume is
still a critical part of diagnosis. However, it is not apparent
that spatial reconstruction of the fluorescence signal provides
quantifiable improvement in detection beyond analysis of the
bulk measurement parameters, as long as they are processed
in a ratio that is robust. The speed and simplicity of bulk
spectroscopy techniques make them particularly attractive for
high-throughput screening of research animals, and image-
guided spectroscopy may be the most robust approach for
translation to human diagnostic testing.
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