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Abstract
Humans need communication. The desire to communicate remains one of the primary issues for
people with locked-in syndrome (LIS). While many assistive and augmentative communication
systems that use various physiological signals are available commercially, the need is not
satisfactorily met. Brain interfaces, in particular, those that utilize event related potentials (ERP) in
electroencephalography (EEG) to detect the intent of a person noninvasively, are emerging as a
promising communication interface to meet this need where existing options are insufficient.
Existing brain interfaces for typing use many repetitions of the visual stimuli in order to increase
accuracy at the cost of speed. However, speed is also crucial and is an integral portion of peer-to-
peer communication; a message that is not delivered timely often looses its importance.
Consequently, we utilize rapid serial visual presentation (RSVP) in conjunction with language
models in order to assist letter selection during the brain-typing process with the final goal of
developing a system that achieves high accuracy and speed simultaneously. This paper presents
initial results from the RSVP Keyboard system that is under development. These initial results on
healthy and locked-in subjects show that single-trial or few-trial accurate letter selection may be
possible with the RSVP Keyboard paradigm.

Index Terms
Brain computer interface; language model; event related potential; Bayesian fusion

I. Introduction
Brain computer interfaces (BCI) are seen as the future of human computer interaction. In
particular, BCI-enabled devices that will allow people with severe speech and motor
disabilities to communicate and interact with their personal networks and environments have
received significant interest by the research community in the last decades [1], [2].
Noninvasive BCI design paradigms, particularly those using electroencephalography (EEG),
are increasingly popular due to their portability, noninvasiveness, cost-effectiveness, and
reliability [1], [2], [3]. A large portion of the functionally locked-in population may lack
precise gaze control to be able to use the commercially available eye-tracking based systems
and the matrix layout based P300-speller [1] paradigms. Therefore, by also considering the
possible heavier cognitive load of matrix based paradigms, we pursue the rapid serial visual
presentation (RSVP) paradigm which does not require precise gaze control to discriminate
intent between various symbols that one could choose from [4], [5]. Our approach, referred
to as the RSVP Keyboard, allows user to sequentially scan the options until the desired
symbol is selected as opposed to the two-tiered selection mechanism of Hexo-Spell by the
Berlin BCI group [3]. In the RSVP paradigm, each candidate letter is shown at the same
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place on the screen in a temporally ordered sequence at a comfortably high presentation rate.
In the current prototype system, EEG responses corresponding to each visual stimuli are
assessed using regularized discriminant analysis (RDA).

Due to the low signal-to-noise ratio in EEG (where noise is primarily due to irrelevant brain
activity), current BCI typing systems require a high number of stimulus repetitions, resulting
in low symbol rates. Hierarchical symbol trees may lead to some speed increase [3], [6], [7].
Our simulations indicate that with error-prone binary-intent-detectors (such as ERP-
detectors), for the English language, the expected bits-per-symbol is negligibly degraded in
the RSVP paradigm (to about 3bits/symbol at no error in intent detection) compared to the
Huffman tree (about 2.5bits/symbol with no errors in binary intent detection), which
minimizes the expected bits to type a symbol [8]. Probabilistic incorporation of a language
model in decision making (as opposed to simple word completion) could help improve EEG
classification accuracy, therefore increase speed by reducing the number of stimulus
repetitions required to achieve a certain level of accuracy.

In this paper, we present the design and initial results of the RSVP Keyboard system, a
novel RSVP and EEG based BCI typing system, which tightly incorporates language models
into the decision mechanism. The fusion of language and EEG evidence is achieved using a
probabilistic framework, assuming that these two pieces of evidence are conditionally
independent given class labels (a symbol is desired or not). An extensive off-line analysis of
the proposed fusion approach was done in a previous study [9]. An initial demonstration of
RSVP keyboard was done in [10]. Here we focus on the first analysis of real-time closed-
loop typing results using the designed prototype, using number of stimulus repetitions per
symbol as the primary performance measure.

II. Methods
The RSVP Keyboard consists of three main components: (1) visual presentation, (2) EEG
data acquisition, and (3) the decision mechanism to select a symbol to type. During the
typing of each symbol, EEG responses to all symbols are collected and the selection of the
symbol to be typed is based on this EEG evidence and the language model assessment of
each candidate symbol. This tight incorporation of language evidence in EEG response
evaluation sharply separates the RSVP Keyboard from existing prototypes of BCI spellers.
While the fusion of language information helps improve speed and accuracy, the use of
RSVP eliminates precise gaze control to focus one's attention on a relatively narrow region
on the display - a challenging feat for most members of the target population, and a crucial
requirement for these BCI systems to work properly [11].

A. RSVP: Rapid Serial Visual Presentation
RSVP is a presentation technique in which visual stimuli are displayed as a temporal
sequence at a fixed location on the screen and with arbitrarily large sizes if needed. In
contrast, the Matrix-P300-Speller places all symbols on the display in a matrix and
highlights a subset (for instance, a column, a row, checkerboard, or an individual letter) [1],
[12]. Berlin BCI's recent variation of their ERP-based Hexo-Spell uses an RSVP like
presentation at the central area, while options (sets of symbols) are displayed around it [3].
RSVP is particularly useful for most users with weak or no gaze control and for those whose
cognitive skills do not allow processing matrix presentation of letters. An example screen
snapshot from the current RSVP Keyboard prototype is given in Fig. 1. The optimal layout
of the screen is a point of research in itself and we will not discuss that issue in detail here.

In the current study, RSVP contains random permutations of the 26 letters in English
alphabet, a space symbol and a backspace symbol (a total of 28 symbols to choose from). If
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repetition is needed, all symbols are repeated multiple times to improve classification
accuracy until a preset desired confidence level is reached1. In the RSVP Keyboard, the user
is assumed to show positive intent exactly for one symbol per epoch (section in which user
types a symbol of the text). Each epoch contains a block of sequences, currently containing
all 28 symbols, of which one is the target symbol. During the calibration phase (classifier
training session), a designated target symbol is shown before each epoch, so that the user
focuses his intent on this known given symbol in order for the classifier calibration to have
labeled positive and negative intent examples of EEG responses.

B. EEG feature extraction via regularized discriminant analysis
As a response to the infrequent target stimulus shown in RSVP sequences, the brain
generates event related potentials including the P300 wave - a positive deflection in the
scalp voltage mainly in the centro-parietal areas with an average latency just over 300 ms.
This natural novelty detection or target matching response allows us to detect intent using
EEG signals. This process starts with extracting stimulus-time-locked bandpass filtered EEG
signals for each stimulus in the sequence. Since physiologically, the most relevant signal
components are expected to occur within the first 500ms following the stimuli, the
[0,500)ms portion of the EEG following each stimulus is extracted. At this stage it is
important to design bandpass filters whose group delay does not shift the physiological
response to outside this interval. A linear dimension reduction is applied on the temporal
signals using Principal Component Analysis in order to to remove zero variance directions
(i.e. zero-power bands based on the estimated covariance). The final feature vector to be
classified is obtained as a concatenation of the PCA-projected temporal signals for each
channel. Regularized Discriminant Analysis (RDA) [13] is used to further project the EEG
evidence into scalar-feature for use in fusion with language model evidence.

RDA is a modification of quadratic discriminant analysis (QDA). QDA yields the optimal
minimum-expected-risk Bayes classifier under the assumption of multivariate Gaussian
class distributions. This classifier depends on the inverses of covariance matrices for each
class, which are estimated from training data. In BCI, to keep the calibration phase short,
few training samples are acquired - especially for the positive intent class. Therefore, the
sample covariance estimates may become singular or ill-conditioned for high-dimensional
feature vectors, which is the case here. RDA applies shrinkage and regularization on class
covariance estimates. Shrinkage forces class covariances closer towards the overall data
covariance as

(6)

where λ is the shrinkage parameter;Σ̂c is the class covariance matrix estimated for class c ∈
{0,1} with c = 0 for non-target class and c = 1 for target class; Σ̂ is the weighted average of
class covariance matrices. Regularization is administered as

(7)

where γ is the regularization parameter, tr[·] is the trace function and d is the dimension of
the data vector. We employ the Nelder-Mead simplex-reflection method [14] to optimize the

1In future designs, we are contemplating adaptive and optimal sequencing of a subset of candidate symbols to save time and increase
speed without negatively affecting accuracy - initial results are encouraging.
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free parameters λ and γ such that a local maximizer of the area-under-the-ROC-curve
(AUC) estimated using 10-fold cross-validation is achieved.

After regularization and shrinkage, the covariance and mean estimates for each class are
used in generating a scalar feature that minimizes expected risk under the Gaussianity
assumption of class distributions. This is the log-likelihood ratio

(8)

Where μc,π̂c are estimates of class means and priors respectively; x is the data vector to be
classified and f (x; μ, Σ) is the pdf of a multivariate Gaussian (normal) distribution.

C. Language modeling
For many text processing applications language modeling constitutes an important part;
likewise, it is significant for BCI typing systems as demonstrated in our earlier analysis of
various letter scanning options used in BCI speller designs [8]. Typically, previously written
text is used to predict upcoming symbols, which might become very predictable in some
contexts and symbol locations. Especially in situations where symbol output rate is low,
language modeling can have a significant impact on speed and accuracy.

In letter-by-letter typing, we adopt n-gram language models at the symbol level. These
models estimate the conditional probability of a letter given n − 1 previously typed letters.
Let W be a sequence of letters where Wi is the ith letter and S be the set of candidate
symbols. For an n-gram model, the conditional probability of Wi given previously written

symbols, , is obtained from (1), s ∈ S and the joint probabilities are estimated by
regularized relative frequency estimation from a large text corpus. The backspace symbol is
assumed to have a constant conditional probability of 0.1 and the conditional probabilities of
the other symbols are

(1)

(2)

(3)

(4)

(5)

normalized accordingly.2
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In this study, a 6-gram model that is trained using a one-million-sentence (210M character)
sample of the NY Times portion of the English Gigaword corpus. Corpus normalization and
smoothing methods are described in [8]. Most importantly for this work, the corpus was case
normalized, and Witten-Bell smoothing was used for regularization [15].

D. Joint target decision
The evidence obtained from EEG and the language model is used collaboratively to make a
more informative symbol decision. For each epoch and a number of sequences shown, NS, a
decision will be made using the previously written symbols and EEG classification scores
corresponding to NS sequences. Let δRDA(xs, ns) be the corresponding posterior ratio scores
obtained from RDA for letter s ∈ S, where ns ∈ {1, 2,…, NS} Then the posterior probability
of letter s to be in class c given the classification scores for letter s trials in each sequence
and the previous letters is given in (2), where cs is the candidate class label of letter s, nLM is

the order of the language model,  and δRDA(xs) =
[δRDA(xs, 1), δRDA(xs, 2),…, δRDA(xs, NS)]. If we further assume that the scores obtained
from RDA for the stimuli corresponding to the current letter and previously written letters

are conditionally independent given class label, i.e , and the RDA scores
corresponding to EEG responses for different trials of the same letter in different sequences
are conditionally independent given the class label, using Bayes' Theorem multiple times,
the posterior probability becomes (3). The conditional probability density functions of RDA
scores given the class labels, P(δRDA(xs, ns))|cs = c), are estimated using kernel density
estimation on the scores of training data, using a Gaussian kernel whose bandwidth is
selected using Silverman's rule of thumb that assumes the underlying density has the same
average curvature with a matching-variance normal distribution [16].

Finally, while making our decisions we assume that there is exactly one target symbol in an
epoch, which is reasonable since the user is expected to look for only one target symbol, and
class labels for different symbols are independent given all the evidence. The posterior
probability of the symbol is given as (4) where δRDA = {δRDA(xs) : ∀s ∈ S}. If

 ∀S ∈ S, after using our assumptions and Bayes' Theorem we
obtain (4). Correspondingly, the most likely symbol is

In real-time typing, at the end of each sequence (a presentation of candidate symbols via

RSVP)  is used as the confidence of selecting the target symbol
correctly, which gives us a stopping criterion for the epoch and allows us to have variable
number of sequences for each typed symbol. In this study, the confidence threshold is set as
0.9, i.e when the accumulated conditional probability of the most likely symbol exceeds 0.9,
the epoch is stopped and that symbol is typed. Using the maximum value in a probability
mass function as the measure of certainty corresponds to utilizing Renyi's order-infinity
entropy definition as the measure of uncertainty in the decision we make. One could use
other definitions of entropy to measure uncertainty/certainty in the current decision.

2The symbol selection accuracy of our current prototype is around 85% – 95% for various subjects, therefore a deletion probability of
10% is reasonable.
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III. Experiments and Results
The EEG signals are recorded using a g. USBamp biosignal amplifier using active
g.Butterfly and g.Ladybird electrodes with cap application from G.Tec (Graz, Austria) at
256 Hz. The EEG channels used were O1, O2, F3, F4, FZ, FC1, FC2, CZ, P1, P2, C1, C2,
CP3 and CP4 according to International 10/20 system. Signals were filtered by nonlinear-
phase 0.5-60 Hz bandpass filter and 60 Hz notch filter (G.tec's built-in design), afterwards
signals filtered further by 1.5-42 Hz linear-phase bandpass filter (our design). The filtered
signals were downsampled to 128Hz. For each channel, stimulus-onset-locked time
windows of [0,500)ms following each image onset was taken as the stimulus response.

We conducted several typing experiments in which two healthy subjects and one locked-in
subject typed some sentences using the proposed system acting in real-time followed by a
short training session with predeclared targets consisting of 50 epochs with 3 sequences
each, i.e 150 sequences of symbols. During the typing tests, subjects were given freedom to
type what they want. However they were asked not to change the text they initially planned
and to correct all the mistakes using the backspace symbol. For the classification, the effect
of language modeling was also decreased by taking the square root of corresponding
conditional probabilities to make the symbols more balanced. The inter-stimuli interval had
been selected to be 150 ms, however it was increased to 400 ms due to the uncomfortable
feeling of some of the subjects. During the typing session, each epoch was upper bounded to
6 sequences, which was decreased to 2 as the preference of the locked-in subject.

Typing performance is quantified by the number of sequences required to successfully type
a desired symbol - including all errors and deletions until the correct desired symbol is
achieved. All subjects wrote two short phrases in two sessions in two separate days. For the
first healthy subject (HS1), whom inter-stimulus interval was 150 ms, the training session
data from the first day was used to train the EEG classifier of the second day as well. The
typing performances of that subject are given in Fig. 2 and the average number of sequences
needed per symbol were 2.93 and 1.58, respectively.3 The typing performances of the
second healthy subject (HS2), whom inter-stimulus interval was 400 ms, are given in Fig. 3
and the average number of sequences needed per symbol were 1.4 and 3.06, respectively.
The locked-in subject successfully wrote HELLO_THERE_PEOP and THIS_IS_FAMILY_,
and average number of sequences needed per symbol were 6.12 and 3.69, respectively 4.

IV. Discussion
In this paper, we presented the description of the first RSVP Keyboard prototype and some
initial results from its real-time operations. Our experience had been that symbol selection
accuracy can go up to around 95% for healthy subjects and around 85% for locked-in
subjects (based on a few examples each). Training of subjects, especially those who are
locked-in, to use the system effectively has been determined to be an unexpected major
challenge. Although not discussed in this paper, we have identified that visual feedback
about EEG-classifier activity during BCI calibration helps subjects greatly in adjusting their
mental activity to help achieve better accuracy collaboratively with the system. The RSVP
Keyboard uses a visual stimulus presentation paradigm that does not require precise gaze
control - a capability that is not present in many patients with locked-in syndrome.

Both off-line and on-line results indicate that symbols that occur later in a word can be
selected with fewer stimulus presentations (sequences). This demonstrates that the language

3Here, 1.00 would be the minimum possible, corresponding to single-trial typing of the desired text.
4The exact number of sequences per symbol was not recorded, however the total number of sequences used was extracted from the
triggers recorded.
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model evidence is particularly useful for these symbols - once the first few letters are typed,
the remaining letters in the word become highly predictable using a rudimentary language
model and this helps EEG classification tremendously.

In future revisions of the RSVP Keyboard, we are contemplating the incorporation of
probabilistic word completion in the RSVP paradigm (no drop down menus as in typical
commercial systems, but instead a tight coupling with the RSVP Keyboard concept). We are
also contemplating the optimization of presented sequences and saving time by selecting a
subset of likely symbols in each sequence. All decisions will have to be made
probabilistically in order to minimize expected time to type a symbol.
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Fig. 1. RSVP keyboard interface
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Fig. 2.
HS1 number of sequences used to type each symbol.
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Fig. 3.
HS2 number of sequences used to type each symbol.
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