
Identifying Proteins: from Gel Bands to Useable Data. 

 

Protein identification is a core task in nearly every proteomics experiment. Whether these studies are 

looking for potential binding sites for a viral protein on the cell surface, searching for new biomarkers in 

human serum, correct and confident identification is essential for success, and to avoid wasting time 

and money chasing bad leads.  

    Protein identification is a complex process with many steps and we have a multitude of different tools 

and techniques available to help us with protein identification. What follows is a summary of how we 

identify proteins using the mass spectrometer. 

 

Sample preparation 

Protein samples are generally submitted to PSR either as a gel band or in a liquid solution, such as a Co-

IP elution buffer. PSR employs a bottom-up approach to protein identification, which involves breaking 

down the protein into smaller peptides for analysis. Before this happens the cystine residues on the 

protein are usually reduced and alkylated to prevent them from forming di-sulfide bonds. The protein is 

then broken down through enzymatic digestion. The most common 

enzyme used in the field is trypsin, but there are dozens of other 

enzymes on the market which cut the protein at different places 

along the amino acid chain, and different enzymes can be used 

upon request.  

Once the protein has been digested it is ready for introduction into 

a liquid chromatography (LC) system. Here proteins are adhered to 

a C18 column in an acetic aqueous solution. Next a liquid pump 

slowly increases the amount of organic solvent (usually 

Acetonitrile) flowing over the sample. In the presence of the 

acetonitrile peptides lose their grip on the column and are eluted. 

Once eluted from the column they are introduced into the mass 

spectrometer via electrospray. When they enter the mass spec a 

peak can be seen in a MS Spectra at a point corresponding to their 

m/z value.  

 

    Peptides that are more hydrophobic tend to elute first and more hydrophilic peptides elute later in 

the gradient. When looking at the height of the peaks in the MS scans over time you can often see 

individual peptides eluting. Very complex mixtures are often subjected to more than one phase of 

fractionation. Salt gradients can be added into a series of organic phase gradients to enhance separation 



of the peptides. These multi-dimensional separations are commonly done by PSR for TMT projects, or 

other experiments that require gathering data on thousands of proteins.  

 

 

 

    After peaks are identified in the MS spectra they are then selected for 2nd order or MS/MS scans 

which are used for identification. In this process first the m/z of the peptide is isolated and then the 

peptide is then broken apart. At PSR this process is accomplished most frequently via a process called 

collision-induced dissociation or (CID) or Higher-energy collisional dissociation (HCD). In these methods 

peptide ions are forced to collide with an inert gas which breaks down the peptide down into its 

component parts. These parts are then scanned into the detector of the mass spectrometer creating an 

MS/MS Spectra. Once a peptide has been fragmented it is then put onto an exclusion list to allow the 

mass spectrometer to choose other less intense peaks for analysis. 

 



How Peptides Fragment 

Below is an MS/MS Spectra created from the fragmentation of a peptide in one of our ion trap mass 

spectrometers. The different fragments each produce a different m/z peak creating a fragmentation 

pattern unique to that peptide.  

 

    After collision with the inert gas the peptide can break apart at any point along its amino acid 

backbone, or on its side chains. Mass spectrometers are usually calibrated to deliver a specific amount 

energy, in the form of a voltage, which excites the peptides to the point where the breakage occurs 

mostly along their backbone.  

    Because the point the peptide breaks is mostly random (some locations are more common than 

others), and varies from molecule to molecule, a series of peaks are generated from the collision of a 

single peptide. Each collision generates a pair of masses each representing one part of the whole 

peptide. Below is an example of the series of masses created from the fragmentation of a single peptide. 

 



 

 

Fragmentation Pattern Analysis 

   Once a MS/MS spectra has been created the next step is trying to determine which peptide the 

fragmentation pattern represents. This process used to be done by hand, and often involved many 

hours spent looking at the spectra, calculating the spacing between the peaks, weeding out ‘bad’ 

spectra, and coming up with a possible identification 

 

 

 

 

 

 

 

 

compares the fragmentation pattern to a database which can contain the sequences of 100,000+ 

proteins, and makes a determination of the best possible match. At PSR we have several different 

computer programs which can do this for us. Comet is our most commonly used software, it is the open-



source version of what has grown from the original Sequest algorithm. We also have Sequest HT which 

is part of Proteome Discoverer and mostly used for TMT analysis, Andromeda which is integrated with 

MassQC and used for SILAC samples, and Byonic which allows for unrestricted PTM searches. Each 

program has its own pros and cons, but they all use similar logic to identify peptides. 

 

A Simple Program (Sequest)   

    Each of the spectral matching algorithms works in a slightly different manner, but they make a lot of 

similar assumptions. What follows is an overview of how the classic Sequest program matches spectra to 

peptides. Sequest was the first program that was written to do this, and is a good model for 

understanding how 

these programs work.  

    To start a ‘peak list’ 

is generated from the 

raw mass 

spectrometer data. 

This consists of a list 

of masses and 

intensities from 

MS/MS spectra. The 

sequest algorithm 

only uses the list of 

masses in matching 

the spectra to 

potential spectra. The 

first step is to put the 

data into 1 Da ‘bins.’ 

To do this the 

algorithm looks to 

see if there is a peak 

present for each 

whole number m/z 

value. If there is then 

it will list that value, if 

not then it will not. 

Next the algorithm 

does the same thing 

for each potential 

sequence in the 

database it is 



searching against. Then Sequest compares the two lists and determines the number of matching values. 

   Following this an additional mass unit is added to one of the datasets and the process is repeated. This 

happens for multiple times for multiple different m/z shifts. The result of this comparison can be seen 

above, with a different number of matching m/z values for various m/z shifts. In a correct match there 

should be a high number of matches with no shift, and many less matches when a mass shift is applied 

to one of the datasets. Incorrect matches should see little to no change in the number of matching 

peaks when shifted. The sharpness of the drop off in the number of matching peaks is interpreted into a 

correlation score; which is the basis for determining how well a MS/MS spectra matches a potential 

sequence. This is referred to as the XCorr value.  

    The other factor which is given a lot of weight is the size of the gap in XCorr scores between the best 

and 2
nd

 best matching sequences. This is reflected in the deltCn score. A correct pairing of spectra and 

hypothetical sequence should result in a larger gap in correlation scores than an incorrect pairing. An 

example of Sequest output can be seen below. 

 

  

 

 

 

 

 

 

 

Probability Software 

Once a potential matching spectra and peptide have been paired together another computer program is 

run to assess the probability of that pairing being correct. There are two major ways that this gets done, 

one is by estimating the error rate by using reversed or similar nonsense protein databases, the other is 

by modeling the distribution of the scores and fitting multiple curves under what is often a bi-modal 

distribution. Below we’ll take a closer look at both these approaches. 

 

 

 



Nonsense Databases 

The most common method today for estimating error in a bottom-up proteomics experiment is by using 

a reversed database. A reversed database is just as simple as it sounds; the amino acid sequences in the 

protein entries are reversed to run C-terminal to N-terminal. Most commonly these sequences are then 

appended to the initial protein database as seen below. 

 

The idea is that MS/MS spectra correctly matching to proteins that are present will cluster in the 

forward database, while incorrectly assigned spectra will match equally often to both the original 

protein sequences and the additional reversed entries. Because of this the matches to the reversed 

entries can be used to estimate the number of matches to the forward entries, and thus the false-

positive rate of different score thresholds in the experiment. So if you have 4 proteins ‘identified’ in the 

reversed database, and 350 matched in the forward database you could assume approximately 4 of 

those 350 proteins have been incorrectly identified. This yields a false discovery rate estimate of 1.1% 

(4/350). 

  

There are different variations of the reversed-database strategy that all work similarly, with various pros 

and cons. Efforts can be made to keep the enzymatic cut sites in the same location which may better 

mimic the peptide size distribution of the original database. Randomized protein sequences can also be 

used instead of straight reversals, which can remove problems with repeating motifs, and allow for 



multiple randomized copies of a database to be appended in cases where a smaller database is a 

potential problem.  Reversed databases can also be searched without having the original protein 

sequences present, and score distributions from one search can be used to infer distribution in the 

other. While some of these additional methods likely do a better job of estimating the amount of truly 

random errors they may also mask more non-random errors, which can lead to higher estimates 

confidence levels than they should. The appended reversed database is usually seen as the more 

conservative method for estimating error. 

 

Distribution Matching 

    Once a potential matching spectra and peptide have been paired together another computer program 

is run to assess the probability of that pairing being correct. This computer program can take score input 

from a spectral matching program and use this data to give the match a probability. To do this software 

will start by calculating a discriminant score for the spectra. 

    The discriminant score is based on a number of different values including:  

-the correlation score (XCorr) from Sequest (or equivalent from other programs) 

-the deltCn from Sequest 

-the number of peptide termini that match enzyme cleavage sites 

-the number of missed cleavages 

-the charge state 

-and other values 

 

The software then assumes that there are 

two distributions in the discriminate 

scores: correct and incorrect, and 

attempts to fit curves over the 

distributions to determine at a set value 

how many of the spectra are correctly and 

incorrectly identified. The relative height 

of these two curves at any point is used to 

determine the probability that an identification is correct. 

 

 



From Peptides back to Proteins 

Once a list of identified peptides have been assembled the next step is to work backwards from the 

peptide level and compile a list of proteins. There are several factors that complicate the translation of 

peptides back into proteins. Some of these are as follows: 

 -Same peptide found in many proteins 

 -False Positive rate 

 -Database size 

 -Search criteria 

 -And others… 

Some of these problems are easier to handle than others. For example many simpler organisms have 

fewer proteins, and thus a smaller protein database. The Swissprot human database contains about 

20,000 entries, but the E.coli database only has about 4,000 proteins. This is a problem as false-positive 

peptide identifications tend to be randomly distributed throughout the database, while true-positives 

tend to cluster. With 5x the space to spread out in the human database we can tolerate far more noise 

at the peptide level; whereas with the E.coli database peptides will appear to cluster sooner simply by 

chance. What this means in practice is that we have to set stricter score thresholds at the peptide level 

in smaller organisms to keep the false-positive rate at the protein level manageable.  

A different problem occurs when the same peptide is found in multiple proteins. This happens most 

commonly among members of the same protein family, proteins with alternative splicing forms, 

proteins with precursor forms, and among similar species when using a multi-species database. If there 

are no identified peptides which can be used to distinguish the proteins from each other one of them 

(generally the first one listed in the database by default) will be reported and the other proteins will be 

listed as redundant sequences, or listed elsewhere depending on the software used.  

Things get even more complicated when two or more proteins partly overlap and the program must 

decide which one or ones are present. In these cases the software will usually apply an Occam’s razor 

approach: it tries to create the shortest list of proteins that accounts for all the peptides present in the 

sample. Some examples of this decision making process are found below:   

 



 

 

 

    In example 1 only Protein A would be assumed to be present because it is the only protein with 

independent evidence, and Protein B would not show up in the list of identified proteins with most 

software. In example 2 both proteins assumed to be present because they both have independent 

evidence. In example 3 only Proteins A and C will be identified because there are no peptides assigned 

to Protein B which cannot be explained by other proteins. This is a clear example of the Occam’s razor 

approach, as is example 4. In this case only Protein A will be listed because it can account for all three 

peptides by itself. 

 

 

 



So Where is my Protein? 

     If you were expecting to find a particular protein in an experiment, and it didn’t appear on your list of 

identified proteins there are several possible reasons.  

– The protein isn’t in the database (relatively easy to check/fix) 

– That there is sequence overlap with other protein ID’s (Blast search ID’ed peptides or compare 

sequences). For example, in the situation above, if Peptide 1 is a false match, and you were 

looking for Protein B, then Scaffold may not have given you the correct result. Also, Protein A 

could be a precursor or closely related protein. 

– That there was sufficient protein to ID the sample  

 

Some Final Thoughts on Protein ID Work  

  It is important to remember that the while the identification of proteins using mass spectrometry has 

started to mature as a science there are many aspects about it that are still difficult, and still actively 

being researched. For example, it can be next to impossible to identify which form of a protein is 

present in a sample if there are many forms present in the cell. This is because of the large amount of 

sequence overlap. There are also some peptides which you will never see in a mass spectrometer. 

Peptides from membrane proteins are particularly hard to see as many of them are highly hydrophobic 

and don’t stick well to our column material or ionize well in the mass spectrometer. The process only 

becomes more complicated as the searches expand into looking for post-translational modifications, 

and/or attempting to do quantitation. 

    Well I hope you know a little more about Proteomics now. You can always contact us here at PSR if 

you have any questions. We’re always happy to help out! 

 

 

 


