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SUMMARY

Chronically activated leukocytes recruited to premalignant tissues functionally contribute to cancer develop-
ment; however, mechanisms underlying pro- versus anti-tumor programming of neoplastic tissues by
immune cells remain obscure. Using the K14-HPV16 mouse model of squamous carcinogenesis, we report
that B cells and humoral immunity foster cancer development by activating Fcg receptors (FcgRs) on resident
and recruitedmyeloid cells. Stromal accumulation of autoantibodies in premalignant skin, through their inter-
action with activating FcgRs, regulate recruitment, composition, and bioeffector functions of leukocytes in
neoplastic tissue, which in turn promote neoplastic progression and subsequent carcinoma development.
These findings support a model in which B cells, humoral immunity, and activating FcgRs are required for
establishing chronic inflammatory programs that promote de novo carcinogenesis.

INTRODUCTION

Clinical, epidemiological, and experimental studies have estab-
lished that chronic inflammation contributes to various aspects
of solid tumor development (de Visser et al., 2006; Mantovani
et al., 2008). In particular, chronic inflammatory diseases,
including several autoimmune disorders, are associated with
increased risk of cancer development (Brandtzaeg et al., 2006;
Dalgleish and O’Byrne, 2002), revealing that B cell hyperactivity
combined with altered cellular immunity cooperate to initiate
and/or sustain persistent inflammation that enhances overall
cancer risk in afflicted tissues.
Deposition of B lymphocyte-derived immunoglobulins (Igs) is

a common occurrence in premalignant and malignant stroma
of human cancers (de Visser et al., 2006; Tan and Coussens,
2007). In addition, high levels of circulating immune complexes
(CIC) are associated with increased tumor burden and poor

prognosis in patients with breast, genitourinary, and head and
neck malignancies (Tan and Coussens, 2007). While little is
known about the function of CICs in tumor development, the
role of CICs in inflammatory and autoimmune diseases is undis-
puted. CIC deposition in stroma has been implicated as an
initiator of inflammatory cascades by mechanisms that include
activation of complement pathways and engagement of the
receptors for the crystallizable region (Fc) of IgG (FcgRs) on
the surface of leukocytes (Takai, 2005). As such, FcgRs repre-
sent a functional link between adaptive and innate immunity by
coupling interactions between circulating (auto)antibodies and
innate immune cells (Nimmerjahn and Ravetch, 2008).
Four classes of IgG receptor FcgRs have been identified,

FcgRI/CD64, FcgRII/CD32, FcgRIII/CD16, and FcgRIV, differing
by their distinct affinity for IgG isotypes, cellular distributions,
and effector functions (Nimmerjahn and Ravetch, 2008). Acti-
vating types of FcgRs form multimeric complexes including the
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Figure 1. B Cells Are Critical Regulators of Premalignant Progression in HPV16 Mice
(A) Percentage of CD45+ cells in skin single cell suspensions isolated from negative littermates (!LM), HPV16/JH+/!, and HPV16/JH!/!mice at 1, 4, and 6months

of age assessed by flow cytometry.

(B and C) Mast cells (B, blue staining) and Gr1+ myeloid cells (C, brown staining) in skin of HPV16/JH+/! and HPV16/JH!/! mice at 1, 4, and 6 months of age

assessed quantitatively after chloroacetate esterase histochemistry or Gr1 immunohistochemistry (IHC), respectively.

(D) Flow cytometric analysis of immune cell lineages expressed as percentages of total CD45+ leukocyte infiltrates in ear tissue of negative littermates (!LM),

HPV16, HPV16/JH+/!, HPV16/JH!/!, and HPV16/RAG1!/! mice at 1, 4, and 6 months of age.

(E) Dendritic (CD11c+) and macrophage (F4/80+) lineage cell composition of CD11b+Gr1+ (left) and CD11b+Gr1! (right) myeloid populations evaluated by flow

cytometry in skin of negative littermates (!LM), HPV16, and HPV16/JH!/! mice at 4 months of age.

(F) Angiogenic vasculature in skin tissue sections from negative littermates (!LM), HPV16/JH+/!, and HPV16/JH!/! mice at 1, 4, and 6 months of evaluation by

CD31/PECAM-1 IHC revealing endothelial cells (brown staining).

(G) Reduced VEGF-A and active MMP-9 protein levels in skin extracts from HPV16/JH!/! versus HPV16/JH+/! mice (4 and 6 months) as assessed by ELISA.
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Fc receptor common g chain (FcRg) that contains an intracellular
tyrosine-based activating motif (ITAM), whose activation triggers
oxidative bursts, cytokine release, phagocytosis, antibody-
dependent cell-mediated cytotoxicity, and degranulation (Takai,
2005). In contrast, engagement of FcgRIIB (or FcgRII in mice),
which contains an immune tyrosine-based inhibitory motif, abro-
gates ITAM-mediated inflammatory responses and instead regu-
lates alternative signaling cascades (Takai, 2005). FcRg expres-
sion is necessary for assembly and cell-surface localization of
FcgRI, FcgRIII, and FcgRIV; as such, FcRg!/! mice (Takai
et al., 1994) are deficient for all activating FcgRs, whereas FcgRII
expression is unaltered. Given that developing solid tumors
display similar characteristics to tissues damaged by autoim-
mune dysfunction, e.g., chronic immune cell infiltration, tissue
remodeling, angiogenesis, and altered cell survival pathways,
we speculated that similar humoral immune-mediated regulatory
pathways may be involved in solid tumor development.
Using a transgenic mousemodel of multistage epithelial carci-

nogenesis, i.e., K14-HPV16 mice (Coussens et al., 1996), we
previously revealed that adaptive immunity is an important regu-
lator of inflammation-associated cancer development (de Visser
et al., 2005). Combined B and T lymphocyte deficiency in HPV16
mice, e.g., HPV16/RAG1!/! mice, resulted in a failure to initiate
and/or sustain leukocyte infiltration during premalignancy (de
Visser et al., 2005). As a consequence, tissue remodeling, angio-
genesis, and epithelial hyperproliferation were significantly
reduced, culminating in attenuated premalignant progression
and a 43% reduction in carcinoma incidence (de Visser et al.,
2005). Importantly, adoptive transfer of B lymphocytes or serum
from HPV16 mice into HPV16/RAG1!/! mice reinstated chronic
inflammation in premalignant tissues, indicating that B cell-
derived soluble mediators were necessary to potentiate malig-
nant progression. In the present study, we investigated whether
B cell-derived IgGs regulate neoplastic progression and sub-
sequent carcinoma development by engagement of FcgRs
expressed on resident and recruited immune cells.

RESULTS

Humoral Immunity-Mediated Promotion of Squamous
Carcinogenesis in HPV16 Mice
HPV16mice express the early region genes of human papilloma-
virus type 16 (HPV16) under control of the human keratin 14 pro-
motor/enhancer (Arbeit et al., 1994). By 1 month of age, HPV16
mice develop epidermal hyperplasias with 100% penetrance
characterized by a terminally differentiated hyperproliferative
epidermis. Between 3 and 6 months of age, hyperplastic lesions
advance focally into angiogenic dysplasias with prominent
hyperproliferative epidermis that fails to undergo terminal differ-
entiation and a dermis containing significant CD45+ leukocyte
infiltration encompassing CD117+ mast cells and CD11b+Gr1+

immature myeloid cells (IMCs; Coussens et al., 1999; de Visser
et al., 2005; Junankar et al., 2006) (Figures 1A–1H). By 1 year
of age, 60% of HPV16 mice (FVB/n, N25) develop malignant
skin carcinomas, 50% of which are squamous cell carcinomas
(SCCs) that metastasize to regional lymph nodes with a "30%
frequency (Coussens et al., 1996). HPV16 mice lacking mast
cells (Coussens et al., 1999), leukocyte-derived matrix metallo-
proteinase (MMP)-9 (Coussens et al., 2000), or B and T lympho-
cytes, e.g., HPV16/RAG1!/! mice (de Visser et al., 2005), exhibit
attenuated parameters of premalignant progression culminating
in reduced SCC development.
Given that adoptive transfer of B cells or serum (isolated from

HPV16 mice) into HPV16/RAG1!/! mice restored hallmarks of
premalignant progression (de Visser et al., 2005), we hypothe-
sized that humoral immunity represented the critical feature
of premalignant progression regulating chronic inflammation.
To investigate this, we generated HPV16 mice deficient for
B220+CD19+ mature B cells (Chen et al., 1993), e.g., HPV16/
JH!/! mice (Figure S1A, available online). Similar to HPV16/
RAG1!/! mice, HPV16/JH!/! mice exhibited reduced infiltration
of premalignant skin by CD45+ leukocytes, including mast
cells and Gr1+ myeloid cells (Figures 1A–1C). Whereas CD11b+

Gr1+F4/80!CD11c! IMCs constitute the most abundant CD45+

leukocyte subtype in premalignant HPV16 skin (Figures 1D
and 1E), immune cell infiltrates in HPV16/JH!/! mice instead
revealed an increased relative proportion of CD11b+Gr1! cells
(Figure 1D) that contained F4/80+ and CD11c+ cells (Figure 1E),
as well as expanded populations of CD3+CD4+ and CD3+CD8+

T cells (Figure 1D). In addition, HPV16/JH!/! mice exhibited
reduced presence of CD31+ blood vessels (Figure 1F), vascular
endothelial growth factor (VEGF), and MMP-9 protein levels
(Figure 1G and Figure S1B); reduced keratinocyte hyperprolifer-
ation (Figure 1H); and diminished presence of focal dysplastic
lesions (Figure 1I). Together, these data indicate that B cells
are critical components of adaptive immunity regulating prema-
lignant progression and characteristics of early squamous carci-
nogenesis in HPV16 mice.

HPV16-Induced Autoantibody Complexes Induce Acute
Inflammation
Because parameters of premalignant progression were rein-
stated in HPV16/RAG1!/! mice by adoptive transfer of serum
from HPV16 animals, and because dysplastic skin of HPV16
mice is characterized by stromal depositions of IgG and IgM
(de Visser et al., 2005), we hypothesized that Igs were the
mediators by which B cells promote premalignant progression.
To assess this, we first evaluated CIC presence in serum of
HPV16 mice and found increased concentrations paralleling
premalignant progression (Figure 2A). Using direct immunofluo-
rescence with biotinylated IgGs isolated from HPV16 serum
(IgGHPV16) as detector antibodies, we revealed that IgGHPV16

(H) Keratinocyte proliferation in skin of negative littermates (!LM), HPV16/JH+/!, andHPV16/JH!/!mice at 1, 4, and 6months of age, as evaluated by quantitation

of bromodeoxyuridine (BrdU)-positive keratinocytes (red staining).

(I) Percentage of ear skin in HPV16/JH!/! and HPV16/JH+/! mice developing hyperplastic lesions by 1 month of age (Hyp) or dysplasia by 4 and 6 months of age

(Dys).

(A–I) Results shown represent mean ± SEM (n = 5–8 mice) and asterisks (*) indicate statistically significant differences (p < 0.05, Mann-Whitney). Representative

images of HPV16/JH+/! and HPV16/JH!/! mouse skin at 4 months of age are shown. Values represent average of five high-power fields of view per mouse and

five mice per category. FOV, field of view; solid red line, epidermal-dermal interface; e, epidermis; d, dermis. Scale bars represent 50 mm. See also Figure S1.
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cognate antigens were localized to both epithelial and dermal
compartments of neoplastic skin (Figure 2B, inset). In addition
to HPV16 E7 oncoprotein-specific autoantibodies (Figure S2)
(Daniel et al., 2005), we identified high titer IgGs specific for
type I, II, and IV collagens, but not laminins 111 and 332
(Figure 2B).

To determine whether stromal deposition of autoantibodies
was sufficient to induce an acute inflammatory response
in vivo, we injected IgGHPV16 versus IgG isolated from negative
littermate mice (IgGwt) intradermally into syngeneic FVB/n mice.
While IgGHPV16 and IgGwt antibodies were similarly detected in
dermis (Figure 2C), only mice injected with IgGHPV16 exhibited
an acute inflammatory response characterized by a significant

increase in CD45+ and Gr1+ cell recruitment (Figure 2D). Since
similar concentrations of IgGHPV16 versus IgGwt differentially
induced leukocyte recruitment in vivo, we hypothesized that
higher proportions of IgGHPV16 as opposed to IgGwt were present
in their active form, e.g., in immune complexes (ICs), and indeed,
we found that IgGHPV16 contains significantly higher levels of both
IgG/C3 and IgG/C1q ICs as compared to IgGwt (Figure 2E).

Differential Expression of FcgR Ig Receptors
on Leukocytes in HPV16 Neoplastic Skin
Premalignant progression in HPV16 mice is independent of
complement cascade activation via complement factor C3
(de Visser et al., 2004); thus, we hypothesized that CICs
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Figure 2. CICs from HPV16 Mice Induce Acute Inflammation
(A) CICs titers in serum collected from negative littermate (!LM), HPV16/JH+/+, and HPV16/JH!/! mice assessed by ELISA with anti-mouse C3 Ig (left) and C1q

(right). The specificity of C1q/IgG binding to ICs was assessed by disrupting C1q-CIC binding using a high-salt solution (C1q/IC/d; gray bars).

(B) Antibody titers for laminin (Lm)-111, Lm-332, collagen (Col)-I, Col-II, and Col-IV in serum from littermate (!LM), HPV16, and HPV16/JH!/! (4 months) were

evaluated by indirect ELISA. Antigens recognized by biotinylated IgGHPV16 were localized by immunofluorescence on skin sections from 4-month-old HPV16

mice (inset; IgGs: red staining).

(C) Immunofluorescence (green staining) staining on syngeneic skin tissue sections reveals presence of intradermally injected purified IgGs isolated from negative

littermate (IgGwt) or HPV16 (IgGHPV16) 24 hr after intradermal injections.

(D) Number of infiltrating CD45+ leukocytes andGr1+ cells in skin tissue sections 24 hr after intradermal injections of PBS, IgGwt, or IgGHPV16 into ears of syngeneic

wild-type FVB/n mice. Values reflect averages from five high-power fields per mouse.

(E) Normalized CIC titers of IgG purified from negative littermates (IgGwt) or HPV16 (IgGHPV16) serum assessed by ELISA with anti-mouse C3 Ig (left) and C1q

(right).

(B and C) Blue staining, DAPI; white line, epidermal-dermal interface; e, epidermis; d, dermis. Scale bars represent 50 mm.

(B–D) Results shown are mean percentages ± SEM (n = 5–8mice) and asterisks (*) indicate statistically significant differences (p < 0.05, Mann-Whitney). See also

Figure S2.
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accumulating in young HPV16 mice promoted neoplastic
progression through activation of FcRg signaling. FcgRs are
broadly expressed on immune cells and encompass both acti-
vating, e.g., FcgRI, III, and IV (including the FcRg subunit), and
inhibitory, e.g., FcgRII, subtype complexes (Nimmerjahn and
Ravetch, 2008). Immunodetection of FcRg, FcgRI, and FcgRII/
III revealed increased presence of CD45+FcgR+ cells in dermal
regions of premalignant HPV16 skin (Figure 3A). Using flow
cytometry, we revealed that while CD11b+Gr1+ IMCs and
CD45+CD117+ mast cells expressed FcgRIII, CD11b+Gr1! cells,
including F4/80+ macrophages and CD11c+ dendritic cells
(DCs), expressed FcgRI and FcgRIII, and no expression of any
FcgR was detected on CD3+ T cells or CD45! nonimmune cells
in neoplastic skin (Figure 3B). B cells were not evaluated given
their undetectable levels in HPV16 skin (Figure 1D) (de Visser
et al., 2005).

Leukocyte FcRg Is Necessary for Tumor Development
and Squamous Carcinogenesis
Because IgGHPV16 induced acute inflammatory responses in
syngeneic nontransgenic mice, and proinflammatory-type
FcgRs were expressed on infiltrating leukocytes in premalignant
HPV16 skin, we evaluated whether carcinoma growth or de novo
squamous carcinogenesis were FcgR dependent. First we
assessed transplantable tumor growth with syngeneic FcRg!/!

(Takai et al., 1994) versus FcRg+/!mice injected subcutaneously
with PDSC5 cells, a carcinoma cell line derived from a poorly
differentiated SCC (Arbeit et al., 1996). Mice lacking FcRg failed
to mount a robust angiogenic response (Figure 3C) as well as to
support transplantable tumor growth (Figure 3D), which was
independent of humoral immune responsiveness as serum Ig
titers increased in PDSC5-injected mice irrespective of FcRg
expression (Figure 3D).
To evaluate whether de novo tumorigenesis was similarly

FcRg dependent, we generated a cohort of HPV16/FcRg!/!

mice that retained expression of inhibitory FcgRII (Figure S3A).
Quantitative evaluation of CD45+ immune cell infiltrates in
neoplastic skin by flow cytometry revealed reduced leukocyte
infiltration in HPV16/FcRg!/!mice as compared to age-matched
HPV16/FcRg+/! tissue (Figure 4A). Similar to HPV16/JH!/!mice,
mast cells and IMCs were significantly reduced in HPV16/
FcRg!/! mice, concomitant with an increased relative influx of
CD11b+Gr1! macrophages and DCs, as well as CD3+CD4+

and CD3+CD8+ lymphocytes (Figures 4B–4D). F4/80 and
CD11c lineage marker expression on both CD11b+Gr1+ and
CD11b+Gr1! cells were unperturbed by absence of FcRg (Fig-
ure 4E and Figure S3D). FcgRIII-expressing CD45+CD49b+CD3!

NK cells represented a minor population in control HPV16 skin,
recruitment of which was not modified by FcRg deficiency
(Figures S3B and S3C).
To determinewhether the activating types of FcgRs alsomedi-

ated other parameters of de novo squamous carcinogenesis, we
analyzed age-matched HPV16/FcRg!/! mice at canonical time
points (1, 4, and 6 months of age) and found reduced develop-
ment of angiogenic vasculature (Figure 4F), VEGF, and MMP-9
protein levels (Figure 4G and Figure S3E); reduced keratinocyte
hyperproliferation and appearance of focal dysplastic regions
(Figures 4H and 4I); and significantly reduced incidence of
SCC development (Figure 4I). Diminished de novo carcinogen-

esis in HPV16/FcRg!/! mice was independent of B cell
responses and humoral immunity as shown by Ig isotype switch-
ing and accumulation of IgG1 and IgG2a in HPV16/FcRg!/! mice
(Figure S3F). Our interpretation of these findings was that periph-
eral activation of humoral immunity in young HPV16 mice
promoted squamous carcinogenesis by locally activating
FcRg-mediated signaling on resident and recruited immune cells
in neoplastic skin. These in turn activate angiogenic programs in
vascular cells, thus enabling tissue expansion via keratinocyte
hyperproliferation, culminating in increased SCC development.

Mast Cell FcRg Activation Regulates Parameters
of Premalignant Progression and Enhances Tumor
Development
Given that we found that combinations of activating FcgRs were
expressed on infiltrating leukocytes in HPV16 skin, and given
that absence of either humoral immunity or FcRg altered leuko-
cyte composition during premalignant composition, we sought
to delineate which distinct FcRg+ leukocyte population exhibited
protumorigenic properties.
FcgRIII+ mast cells regulate tissue remodeling, angiogenesis,

and keratinocyte hyperproliferation in HPV16 mice (Coussens
et al., 1999; Coussens et al., 2000), thus we evaluated whether
FcRg-dependent activation of mast cells was in part necessary
for neoplastic progression. Using conditioned medium gener-
ated from FcRg-deficient versus FcRg-proficient bone marrow-
derived mast cells (BMMCs) previously stimulated with either rat
IgG, IgGHPV16, or IgGwt, we found that Ig-activated mast cells
induced human umbilical vein endothelial cell (HUVEC) migration
(Figure 5A), VEGF expression (Figure 5B), and CD45+ peripheral
blood leukocyte (PBL) recruitment (Figure 5C), which were
dependent on FcRg expression. The diminished capabilities of
FcRg-deficient mast cells were conserved in vivo as PDSC5
tumor growth was significantly diminished in mast cell-deficient
(kitsh/sh) mice, whereas presence of FcRg-proficient BMMCs
significantly enhanced tumor growth, development of angio-
genic vasculature, and infiltration by Gr1+ leukocytes (Figures
5D and 5E). These features were not significantly altered in
PDSC5 tumors grown in the presence of FcRg!/! BMMCs as
compared to PDSC5 cells alone (Figure 5E). Thus, these findings
support a model in which mast cells respond to CIC deposition
in early neoplastic stroma by activating FcgR-mediated path-
ways, leading to PBL recruitment and angiogenesis, which
together establish a microenvironment permissive for tumor
development.

FcRg-Independent and -Dependent Properties
of CD11b+ Myeloid Cells in HPV16 Mice
As described both in cancer patients and mice harboring some
transplantable tumors (Ostrand-Rosenberg, 2008), CD11b+Gr1+

cells accumulate in spleen and peripheral blood of HPV16
mice (Figure S4A). Morphological analysis of CD11b+Gr1+ cells
isolated from neoplastic skin and spleen of HPV16mice revealed
characteristics of immature granulocytes, including presence
of elongated band-shaped, nonfragmented nuclei (Figure 6A)
in cells encompassing a mixed population expressing CD45,
7/4, CD14, CD44, IL4Ra, CD80, and CD86, but not CD34
(Figure S4B). In contrast, CD11b+Gr1! cells (from skin) accumu-
late only in draining lymph nodes of HPV16 mice (Figure S4A),
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Figure 3. Infiltration of FcgR+ Leukocytes during Neoplastic Progression in HPV16 Mice
(A) Infiltration of leukocytes expressing FcRg (red staining, top), FcgRI (red staining, middle), and FcgRII/III (brown staining, bottom) in premalignant skin of HPV16

mice evaluated in tissue sections by immunofluorescence. Shown in the right panels is double immunofluorescence staining revealing expression of FcRg and

FcgRII/III on CD45+ leukocytes. Solid line, epidermal-dermal interface; e, epidermis; d, dermis; blue staining, DAPI. Scale bars represent 50 mm.

(B) Differential expression of FcgRI and FcgRIII by individual leukocyte populations in premalignant skin of HPV16 (red) and HPV16/JH!/! (blue) mice at 4 months

of age. Live cells were gated as CD45+ leukocytes, CD45+CD3+ T lymphocytes, CD11b+Gr1+ IMCs, CD11b+Gr1! mixed macrophages/DCs, and CD45+CD117+

mast cells. Grey line, Ig control.

(C) PDSC5 tumor cells were injected as matrigel plugs into FcRg+/! and FcRg!/! mice (FVB/n). Neovascularization was evaluated by CD31 IHC (brown staining).

Values reflect number of CD31+ vessels averaged from five high-power fields per mouse (n = 5–8 mice). Scale bars represent 25 mm.

(D) Deficient tumor growth in mice lacking FcRg. PDSC5 tumor cells were injected s.c. into FcRg+/! and FcRg!/! syngeneic FVB/n mice. Titers of IgG in serum of

wild-type (WT) FVB/n versus transplanted FVB/n mice evaluated by ELISA.

(C and D) Results shown are mean percentages ± SEM. Asterisks (*) indicate statistically significant differences (p < 0.05, unpaired t test).

Cancer Cell

FcRg Activation Potentiates Squamous Carcinogenesis

126 Cancer Cell 17, 121–134, February 17, 2010 ª2010 Elsevier Inc.



exhibited a more mature phenotype with larger cellular
diameters, dense granules, vacuole-rich cytoplasm, and round
nuclei (Figure 6A), and reflected subpopulations orientated
toward dendritic (CD11c+) and macrophage lineages (F4/80+)
(Figure S4B).
To delineate which distinct FcRg+ myeloid population present

in HPV16 neoplastic skin exerted FcRg-dependent protumor
properties, and considering the fact that differential activation
of FcgRs regulates DC maturation (Takai, 2005), we evaluated
expression of CD86, CD80, and MHC-II by flow cytometry in
CD11b+Gr1!CD11c+F4/80! DCs from cervical lymph nodes
and premalignant skin of HPV16/FcRg+/! and HPV16/FcRg!/!

mice and found no significant differences (Figure S5A). Similarly,
when we audited gene expression of CD11b+Gr1!CD11c+F4/
80! skin DCs isolated from age-matched HPV16/FcRg+/! and
HPV16/FcRg!/! mice by low-density qPCR arrays, we found
no change in expression of genes reflecting DC maturation.
However, HPV16/FcRg!/! DCs reflected myeloid population
polarized toward a TH1 state as shown by enhanced expres-
sion of Nos2, IL1a, IFNg, IL12a, Ptgs2, and IL6 (Figure S5B and
Table S1).
CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) have

been reported to promote tumor development by enhancing
angiogenesis and by inhibiting T lymphocyte-mediated anti-
tumor immunity (Ostrand-Rosenberg, 2008). Since CD11b+Gr1+

accumulate in HPV16 neoplastic tissue and peripheral sites and
exhibit an immature morphology (Figure 6A and Figure S4B), we
assessed their immune-suppressive capabilities as compared
to CD11b+Gr1+ cells isolated from tumors and spleens of 4T1
mammary tumor-bearing mice, a model where immune-sup-
pressive properties of MDSCs have been previously described
(Figure S5C) (Ostrand-Rosenberg, 2008). Neither CD11b+Gr1+

cells isolated from premalignant skin nor from spleen of HPV16
mice demonstrated in vitro inhibition of polyclonal activation
of either CD4+ or CD8+ T cells (Figure S5C). In addition, CD11b+

Gr1+ cells failed to produce reactive oxygen species, major
mediators implicated in myeloid-mediated immune suppression
(Figure S5D) (Ostrand-Rosenberg, 2008). Moreover, using
low-density qPCR arrays, gene expression analysis of HPV16/
FcRg!/! versus HPV16/FcRg+/! skin CD11b+Gr1+ cells revealed
downregulation of IL1a, Ptgs2, and TNFa, indicative of a dimin-
ished proinflammatory state (Figure S5E and Table S1). More-
over, when co-injected with PDSC5, CD11b+Gr1+ cells isolated
from skin of HPV16 mice failed to alter either tumor growth or
development of angiogenic vessels (Figures 6B and 6C) and
did not exhibit proangiogenic activity in vitro (Figure 6D). Thus,
although present in significant numbers, CD11b+Gr1+ cells infil-
trating neoplastic skin are likely to represent a population of bona
fide immature cells.

FcRg Activation Mediates the Protumor and Angiogenic
Bioactivities of CD11b+Gr1!F4/80+ Macrophages
In contrast to IMCs, both spleenic and skin CD11b+Gr1!CD11c!

F4/80+ macrophages induced HUVEC migration in vitro by
a FcRg-dependent mechanism (Figure 6D) and significantly
enhanced PDSC5 tumor growth in vivo (Figures 6B and 6C).
Moreover, macrophage-enhanced tumorgenicity of PDSC5 cells
was also FcRg dependent (Figures 7A and 7B). Interestingly,
bone marrow-derived FcRg!/! macrophages, when admixed

with PDSC5 cells, not only failed to promote transplantable
tumor development but also impeded tumor growth (Figure 7B).
Given that DC gene expression analyses revealed altered

programming toward a TH1-type state, we reasoned that
perhaps, similarly, in the absence of FcRg signaling, macro-
phages were also reprogrammed. Indeed, using low-density
qPCR arrays and RT-PCR, gene expression analyses of macro-
phages isolated from HPV16/FcRg+/! versus HPV16/FcRg!/!

skin revealed significant upregulation of genes reflecting clas-
sical ‘‘M1’’ activation, including Il1b, Il12a, Cxcl10, Nos2,
Cxcl11, and IL1a, whereas genes reflecting alternative ‘‘M2’’
(Il13, Cd163, Ccl17, Il4, and Ym1) or ‘‘M2-like’’ (Ccl1) activation
were significantly downregulated in HPV16/FcRg!/! as com-
pared to HPV16/FcRg+/! macrophages (Figure 7C).
Among the differentially expressed genes, the angiostatic

chemokines Cxcl10 and Cxcl11 were significantly elevated in
HPV16/FcRg!/! macrophages (Figure 7C). We confirmed that
mRNA expression of Cxcl10, as well as its receptor Cxcr3,
were significantly upregulated in whole neoplastic skin of
4-month-old HPV16/FcRg!/! and HPV16/JH!/!, as compared
to age-matched HPV16/FcRg+/! skin by qRT-PCR (Figure 7D).
Given that VEGF-induced HUVEC migration was significantly
inhibited by CXCL10 in a CXCR3-dependent manner (Figure 7E),
we evaluated FcRg-deficient versus FcRg-proficient macro-
phages isolated from the respective HPV16 cohorts and
revealed CXCR3-dependent angiostatic activity of FcRg!/!

macrophages (Figure 7F).

DISCUSSION

We revealed a provocative and functional role for B cells and acti-
vating type FcgRs as potentiators of squamous carcinogenesis.
Using a transgenic mouse model of epithelial carcinogenesis
and mice lacking either B cells or activating FcgRs, we found
that IC stimulation of leukocyte FcRg is critical for establishing
a protumor microenvironment in premalignant tissue that directs
not only recruitment of leukocytes from peripheral blood but also
leukocyte composition, phenotype, and bioeffector functions
once within neoplastic tissue (Figure 8). As such, proangiogenic
and protumorigenic functions of mast cells and macrophages
are differentially regulated by humoral immunity and functionally
contribute to squamouscarcinogenesis (Figure8). Thesefindings
have broad clinical implications as they reveal critical signaling
pathways regulated by humoral immunity and FcRg to target
therapeutically in patients at risk for cancer development, e.g.,
patients suffering from chronic inflammatory diseases, as well
as individuals harboring premalignant lesions where chronic
inflammation compromises tissue integrity and enhances risk of
malignancy.

Regulation of Protumor Immunity by B Cells, Humoral
Immunity, and Activating FcgRs
While early and persistent inflammatory-type reactions in or
around developing neoplasms are thought to regulate tumor
development (de Visser et al., 2005; Mantovani et al., 2008),
tumor-promoting properties of adaptive leukocytes have not
been fully elucidated.As thecentral componentof humoral immu-
nity, B lymphocytes function in antibody production, antigen
presentation, and secretion of proinflammatory cytokines. In the
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Figure 4. FcRg Expression Is a Critical Determinant of Squamous Carcinogenesis in HPV16 Mice
(A) Percentage of CD45+ cells in skin of HPV16/FcRg+/! and HPV16/FcRg!/! mice at 1, 4, and 6 months assessed by flow cytometry.

(B and C) Mast cells (B, blue staining) and Gr1+ myeloid cells (C, brown staining) in skin of HPV16/FcRg+/! and HPV16/FcRg!/!mice at 1, 4, and 6 months of age

assessed quantitatively after chloroacetate esterase histochemistry or Gr1 IHC, respectively.

(D) Flow cytometric analysis of immune cell lineages as percentages of total CD45+ leukocytes in single-cell suspensions from nontransgenic, HPV16/FcRg+/!,

and HPV16/FcRg!/! transgenic skin at 1, 4, and 6 months of age.

(E) Dendritic (CD11c+) andmacrophage (F4/80+) cell composition in CD11b+Gr1+ andCD11b+Gr1!myeloid populations evaluated by flow cytometry of single cell

suspensions derived from skin of negative littermate (!LM), HPV16, and HPV16/FcRg!/! mice at 4 months of age.

(F) Attenuated angiogenesis in premalignant skin of HPV16/FcRg!/!mice. Density of angiogenic vasculature evaluated quantitatively by CD31 IHC (brown stain-

ing) on age-matched tissue sections.

(G) Reduction in total VEGF-A and active MMP-9 protein levels in skin tissue extracts from age-matched HPV16/FcRg!/! and HPV16/FcRg+/! mice as deter-

mined by ELISA.

(H) Keratinocyte proliferation evaluated as percentage of bromodeoxyuridine (BrdU)-positive keratinocytes (red staining) in ear skin tissue sections representing

age-matched negative littermate (!LM), HPV16/FcRg+/!, and HPV16/FcRg!/! premalignant skin.

(I) Percentages of ear skin (area) exhibiting hyperplasia by 1 month of age (Hyp) or dysplasia by 4 or 6 months of age (Dys). Values represent percentages of

mice with specific neoplastic phenotypes. Statistical significance was determined using the Mann-Whitney test. Lifetime incidence of SCC was determined
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context of cancer, in addition to altering local and circulating
levels of cytokines, B cells also inhibit TH1-mediated anti-tumor
immunity. In a transplantable model of colorectal cancer, partial
B cell depletion resulted in significantly reduced tumor burden
(Barbera-Guillem et al., 2000), while B cell-deficientmice showed
resistance to syngeneic tumors (Shah et al., 2005). In addition,
overexpression of tumor necrosis factor receptor-associated
factor 3 in lymphocytes activates humoral immune responses
that result in chronic inflammation and enhanced incidence of
cancer, particularly SCCs (Zapata et al., 2009).

Using HPV16/B cell-deficient mice, we found that pre-
malignant progression was significantly attenuated and essen-
tially stalled at an early hyperplastic stage. In the absence of
B cells, leukocyte recruitment from peripheral blood was
reduced, vasculature failed to mount an angiogenic response,
and hyperproliferation of keratinocytes failed to support tissue
expansion to a carcinoma in situ state. Thus, peripheral activa-
tion of B cells represents an early event in premalignant pro-
gression that promotes subsequent neoplastic programming
of tissue.
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Figure 5. Activating FcgRs Regulate Protumor Functions of Mast Cells
(A) FcgR-dependent chemotaxis of HUVECs in response to FcgR-stimulated mast cells isolated from FcRg+/! or FcRg!/! mice. BMMCs were stimulated with

2.4G2 and anti-rat IgG (25 mg/ml; FcgR-stim.), IgGHPV16, or IgGwt (30 mg/ml). HUVECmigration in response to conditioned mediumwas assessed using a Boyden

chamber assay. A specific VEGF-R2 inhibitor (DC101; 100 mg/ml) was used. HUVEC migration was quantitated by enumerating the number of migrating cells in

four random fields per membrane (1253 magnification). Samples were assayed in quadruplet for each assessed condition.

(B) BMMCs from FcRg+/! or FcRg!/! mice were FcgR stimulated or activated with IgGHPV16 or IgGwt in the presence or absence of the mast cell stabilizer

cromolyn (10 mM). Levels of VEGF-A in conditioned medium were assessed by ELISA. Representative analysis from three independent experiments is shown.

(C) PBLmigration in response to conditionedmedium fromFcRg+/! versus FcRg!/!BMMCs after FcgR stimulation was evaluated with a Boyden chamber assay.

PBLs migrating to the lower chamber were visualized by H&E staining in five to eight random fields per well. Samples were assayed in triplicate for each tested

condition.

(D) FcRg-proficient mast cells enhance tumorigenicity. PDSC5 tumor cells (blue) alone or admixed with FcRg+/! (red) or FcRg!/! (green) BMMCs were injected

s.c. into FVB/n (WT) or kitsh/sh (gray) mice at a 1:1 ratio. The asterisk (*) indicates statistically significant differences between PDSC5 cells in combination with

FcRg+/! versus FcRg!/! BMMCs. The number sign (#) indicates statistically significant differences between tumor growth in syngeneic FVB/n or kitsh/sh mice.

(E) FcRg-proficient mast cells induce angiogenesis and leukocyte infiltration of transplantable tumors. Blood vessels and leukocyte infiltration were evaluated by

CD31 and Gr1 IHC. Values represent average of five high-power fields of view per tumor and six to ten tumors per category.

(A–E) Data are represented as means ± SEM; *p < 0.05; **p < 0.01 (unpaired t test).

in HPV16/FcRg+/! and HPV16/FcRg!/! mice (97 and 132 mice/group, respectively). Tumor incidence was analyzed with the generalized Wilcoxon test. Hazard

ratio was determined by Kaplan Meyer analysis of tumor incidence. All mice reflect similarly backcrossed groups at FVB/n, N5.

(A–H) Results shown representmean ± SEM (n = 5–8mice) and asterisks (*) indicate statistically significant differences (p < 0.05,Mann-Whitney). Values represent

average of five high-power fields of view per mouse. Representative images of HPV16/FcRg+/! and HPV16/FcRg!/! skin tissue sections at 4 months of age are

shown. Red line, epidermal-dermal interface; e, epidermis; d, dermis. Scale bars represent 50 mm. See also Figure S3.
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How do B cells ‘‘promote’’ solid tumor formation? It is well
known that cancer patients develop antibodies to tumor-associ-
ated antigens—evidence exist for c-myc, HER-2/neu, and p53
(Lu et al., 2008). In addition, high circulating levels of ICs are
associated with increased tumor burden and poor prognosis in
patients with breast, genitourinary, and head and neck malig-
nancies (Tan and Coussens, 2007). In a chemical carcinogenesis
mouse model of papilloma growth, immunization against an
inherited oncoprotein failed to eradicate tumor cells but
rather induced tumor growth (Siegel et al., 2000). Increased
levels of Ig in neoplastic microenvironments result in accumula-
tion of ICs that favor tumor-promoting inflammatory responses
including recruitment and activation of several myeloid cell types
(Barbera-Guillem et al., 1999). When injected into syngeneic
nontransgenic mice, CICs (from HPV16 mice) alone were suffi-
cient to trigger an acute inflammatory response. While largely
not described in the context of cancer, the significance of inflam-
matory responses to autoantibodies has been studied in mouse
models of autoimmune disease (Nimmerjahn andRavetch, 2008)
where FcgRs have been recognized as effectors that induce
recruitment of CD11b-expressingmyeloid cells into tissue (Berg-
told et al., 2006). Thus, mice deficient in activating-type FcgRs
are resistant to IC-mediated hypersensitive reactions, such as
alveolitis, glomerulonephritis, and skin Arthus reaction, while
mice deficient in FcgRII exhibit enhanced IC-mediated inflam-
matory responses (Takai, 2005). Herein, we found differential
presence of both activating and inhibitory types of FcgRs on
infiltrating myeloid cells, and using FcRg-deficient mice, we

demonstrated a functional role for the Fc activating receptors
in cancer promotion. Therefore IgG-mediated activation of FcRg
on resident and recruited leukocytes, including mast cells and
macrophages, regulated not only PBL recruitment but also
leukocyte activation and bioeffector function within the neo-
plastic microenvironment.
Activation of complement pathways is an alternative mecha-

nism by which IgG could induce leukocyte activation and
recruitment, further leading to chronic inflammation. Markiewski
et al. (2008) reported that transplanted renal tumor growth was
regulated by complement activation and that C5a deposition
was associated with MDSC recruitment and subsequent CTL
suppression. Complement factor C3 does not alter parameters
of neoplastic progression in HPV16 mice (de Visser et al.,
2005); however, C3-independent mechanisms do exist (Bau-
mann et al., 2001). As such, we cannot exclude a role for comple-
ment factors as sensors of IC deposition in HPV16 mice, poten-
tially regulating C3-independent FcgR activation.
It is intriguing to speculate that targeting B lymphocyte/Ig/

FcgR pathway by inactivating either B lymphocytes or FcRg
signaling may be tractable for anti-cancer therapy. In support
of this approach, patients with rheumatoid arthritis, systemic
lupus erythematosus, and others, have benefited following B
cell-depletion therapy using a chimeric monoclonal antibody
specific to human CD20, e.g., Rituximab (Gurcan et al., 2009).
Rituximab has also shown clinical efficacy in adult acute lympho-
blastic leukemia (Gokbuget and Hoelzer, 2006). Support for
extending Rituximab into solid tumor therapy comes from
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Figure 6. Tumor-Promoting Activities of
CD11b+Gr1+/! Myeloid Cells in HPV16 Mice
(A) Representative micrographs depicting mor-

phology of CD11b+Gr1+ and CD11b+Gr1!myeloid

cells purified by FACS sorting from skin or spleen

of HPV16 mice (4 month) and visualized via May-

Grünwald-Giemsa staining (scale bars represent

50 mm).

(B) Macrophages and spleen IMCs enhance

tumorgenicity. Tumor growth of PDSC5 cells alone

(red line) or admixed with either IMCs (blue line) or

macrophages (MØ, green line; PDSC5/leukocyte =

10:1) FACS sorted from neoplastic skin (top graph)

or spleen (bottom graph) of HPV16 mice at

4 months of age. Asterisks (*) and number signs

(#) indicate statistically significant differences

between PDSC5 cells alone and PDSC5 in combi-

nation with macrophages and IMCs, respectively.

(C) Macrophages and spleen IMCs enhance tumor

angiogenesis. Blood vessels in PDSC5 subcuta-

neous tumors were evaluated by CD31 and Gr1

IHC. Values represent average of five high-power

fields of view per tumor and six to ten tumors per

category.

(D) FcgR-stimulated macrophages are chemo-

tactic toward endothelial cells. Macrophages

and IMCs were purified by FACS sorting from

neoplastic skin and spleens of 4-month-old

HPV16 mice and treated for IgG-dependent

FcgR stimulation and HUVEC chemotaxis was

evaluated in a Boyden chamber assay.

(B–D) Data are represented as means ± SEM

(*, #p < 0.01; **p < 0.001, unpaired t test). See

also Figure S4 and Table S1.
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a clinical study with colon cancer patients in which numbers
of CD21-hyperpositive lymphocytes were reduced in parallel
with reduction in tumor burden (Barbera-Guillem et al., 2000).
Although Rituximab effectively deletes circulating B cells, no
increased susceptibility to infection has been observed in
patients with rheumatoid arthritis or non-Hodgkin’s lymphoma
(Gokbuget and Hoelzer, 2006), thus supporting the approach
and manipulation of humoral immunity and/or its downstream
effector pathways as a therapeutic possibility.

Programming Recruited Leukocytes and Inhibiting
Protumor Immunity
Clinical and experimental data indicate that chronic presence
and activation of immune cells, e.g., mast cells, macrophages,

Tie2-expressing monocytes, neutrophils, DCs, IMCs, and CD4+

T cells, promote tumor development by activating angiogenic
programs, suppressing antitumor immunity (Mantovani et al.,
2008), and enhancing tumor cell migration and metastasis
(DeNardo et al., 2009; Pollard, 2008). When chronically activated
in tumor microenvironments, some myeloid cells are pro-
grammed such that they deliver a diversity of bioactive media-
tors to neoplastic tissues, including chemokines, cytokines,
matrix remodeling enzymes, and cytotoxic proteins (Mantovani
et al., 2008). Identification of the critical programs that induce
these protumor pathways would reveal important mediators to
potentially target with anticancer therapeutics.
Mast cells exert duality as cancer mediators with some clinical

studies indicating their presence in human cancers correlates
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Figure 7. FcRg Expression Regulates
Proangiogenic and Protumorigenic Proper-
ties of Macrophages
(A and B) FcRg expression regulated macrophage

protumor activity. PDSC5 tumor cells were

injectedalone (blue) or admixedwithmacrophages

derived from neoplastic skin (MØskin) of either

HPV16/FcRg+/! (red) or HPV16/FcRg!/! (green)

mice (A) or instead from bone marrow-derived

macrophages (MØBM) isolated from FcRg+/! (red)

or FcRg!/! (green) mice (B). The asterisk (*) indi-

cates statistically significant differences between

PDSC5 cells admixed with FcRg+/! versus

FcRg!/! macrophages. The number sign (#) indi-

cates statistically significant differences between

PDSC5 alone and PDSC5 admixed with FcRg!/!

macrophages. Data are represented as means ±

SEM; p < 0.05, unpaired t test.

(C) Genes differentially expressed in macro-

phages isolated from neoplastic skin of HPV16/

FcRg!/! versus HPV16/FcRg+/! mice. mRNA

expression levels in macrophages from HPV16/

FcRg!/! neoplastic skin (4 month old) are indi-

cated as fold change as compared to HPV16/

FcRg+/! macrophages with DCT of each gene

calculated with b2-microglobulin as endogenous

control. Expression was considered as statisti-

cally significantly deregulated when p < 0.05

(t test, FcRg!/! versus FcRg+/!).

(D) Quantitative real-time PCR analysis of Cxcl10

and Cxcr3 mRNA expression in ear tissue from

4-month-old negative littermate (!LM), HPV16,

HPV16/JH!/!, and HPV16/FcRg!/! mice (n =

3–5 mice/cohort). *p < 0.05; **p < 0.01, unpaired

t test.

(E) VEGF165-induced (100 ng/ml) HUVEC chemo-

taxis was evaluated in a Boyden chamber assay

after pretreatment with recombinant CXCL10

(100 ng/ml) in the presence or absence of

CXCR3 blocking antibody (10 mg/ml). *p < 0.05;

**p < 0.01, unpaired t test.

(F) Macrophages isolated from HPV16/FcRg!/!

mice exhibit angiostatic activity. HUVEC chemo-

taxis in a Boyden chamber assay was evaluated

after pretreatment with conditioned medium iso-

lated from macrophages (purified from skin of HPV16/FcRg+/! or HPV16/FcRg!/! mice) following activation with LPS (10 ng/ml) and aCXCR3 blocking Ig

(10 mg/ml). *, p < 0.05; **, p < 0.01, unpaired t test.

(E and F) Pretreated HUVECs were evaluated for chemotactic migration in response to VEGF (100 ng/ml) using a Boyden chamber assay. Quantitative values

reflect the number of migrating HUVECs averaged from four to five high-power fields per insert and four inserts per treatment ± SEM. At least three independent

analyses were performed and one representative experiment is shown. See also Figure S5 and Table S1.
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with a favorable clinical outcome, whereas others clearly
implicate them as protumor mediators (Theoharides and Conti,
2004). In HPV16 mice (Coussens et al., 1999), and in other
models of cancer development (Nakayama et al., 2004;
Soucek et al., 2007), mast cell-derived factors foster tumor cell
survival and angiogenesis. With IgG-mediated stimulation of
mast cells enhancing tumor development and angiogenesis in
HPV16 mice, these data indicate a functional requirement for
FcRg engagement for activating protumor cascades, leading
to PBL recruitment into neoplastic skin, angiogenesis, and tumor
development.

Pharmacologic inhibition of macrophages minimizes cervical
carcinogenesis in HPV16 mice (Giraudo et al., 2004), whereas
elimination of macrophages during mammary carcinogenesis
limits cancer progression and metastasis (Pollard, 2008) by
reducing angiogenesis in premalignant tissues. Interestingly,
pro- versus anti-metastatic properties of infiltrating macro-
phages in MMTV-PyMT mice are programmed by CD4+ T
lymphocytes via an IL-4-dependent mechanism (DeNardo
et al., 2009). In contrast, in ovarian cancer, macrophage pheno-
type is regulated by IL-1R and MyD88, which together maintain
a macrophage immunosuppressive M2 phenotype (Hagemann
et al., 2008). In the present study, we report that B cells and
FcRg are key parameters regulating pro- versus antitumor
programming of macrophages during squamous carcinogenesis

through a mechanism that not only involves modified M1 versus
M2 or M2-like polarization but also the differential expression of
an angiostatic chemokine Cxcl10 and its receptor Cxcr3. As
such, activation of angiogenic vasculature in developing tumors
is regulated by multiple subsets of myeloid cells, each exhibiting
a distinct signature of pro- versus antiangiogenic molecules, as
well as likely being programmed by distinct effector pathways
dependent on the tissue microenvironment.
These experimental findings imply that reprogramming

myeloid cell phenotypes and/or altering the immune microenvi-
ronment to foster antitumor versus protumor activity could
improve survival of patients with cancer by limiting cancer devel-
opment and perhaps stabilizing premalignant or premetastatic
disease. Proof-of-concept studies supporting this notion were
recently reported by De Palma et al. (2008) demonstrating that
myeloid cells could be used as vehicles to deliver immune medi-
ators to tumor microenvironments and essentially reprogram
them.

Conclusions
Results from this studydemonstrate a key role forB lymphocytes,
humoral immunity, and activation of FcRg signaling pathways
in myeloid cells as promoting forces for squamous carcinogen-
esis. With regards to therapy, our data indicate that anti-cancer
strategies targeting B cells, Ig, or FcRg may harbor therapeutic
efficacy in limiting risk of malignant conversion in patients
suffering from chronic inflammatory diseases or in patients
harboring premalignant lesions whose molecular and/or immu-
nologic characteristics favor tumor development. The efficacy
and safety of Rituximab for various autoimmune disorders and
some hematological cancers could be extended to potentially
combat squamous neoplasms in which IC deposition is promi-
nent and/or activation of FcRg-mediated signaling is evident.

EXPERIMENTAL PROCEDURES

Animal Husbandry
Generation and characterization of HPV16, JH!/!, FcRg!/!, and c-kitsh/sh

mice have previously been described (Arbeit et al., 1994; Coussens et al.,

1996; Lyon and Glenister, 1982; Takai et al., 1994). To generate HPV16

mice in the JH!/! and FcRg!/! backgrounds, JH+/! and FcRg+/! mice were

backcrossed into the FVB/n strain to N5 and intercrossed with HPV16 mice.

c-kitsh/+ mice were backcrossed five generations into FVB/n. All mouse

experiments complied with National Institutes of Health guidelines and were

approved by the University of California San Francisco Institutional Animal

Care and Use Committee. Characterization of neoplastic stages has been

reported previously (Coussens et al., 1996).

In Vivo Assays
For evaluation of proinflammatory properties of IgGs, serum-purified IgGs

(20 ml; 12 mg/ml) were injected intradermally into ears of (!)littermates. For

performing matrigel plug assays, PDSC5 cells (Arbeit et al., 1996) (1.5 3

106/100 ml) were suspended in 300 ml of Matrigel and injected s.c. in the groin

area of 7-week-old mice. For tumorgenicity assays, PDSC5 cells (0.5 3

106 cells) were suspended in 100 ml of Matrigel in PBS (1:1) and inoculated

s.c. into flanks of 7-week-old mice. Tumors were measured at 2 day intervals

with a digital caliper, and tumor volume was calculated with the equation

V (mm3) = a 3 b2/2 (a is the largest diameter and b the smallest diameter).

Low-Density qPCR Arrays
Immune Panel TaqMan arrays (Applied Biosystems) were used to measure the

expression of 96 genes in three biological replicates. Analysis of raw data

Figure 8. Activation of the FcRg Pathway in Mast Cells and Macro-
phages by Humoral Immunity Regulates Squamous Carcinogenesis
of HPV16 Mice
HPV16 oncogene expression initiates keratinocytes and triggers early

neoplastic progression accompanied by neo- and self-antigen presentation,

peripheral B cell activation/maturation, and secretion of Igs. Autoantibodies

subsequently accumulate in dermal stroma of neoplastic tissue as vasculature

becomes initially angiogenic and ‘‘leaky.’’ IgGs interact with Fcg receptors on

resident and recruited myeloid cells where they induce differential recruitment

of leukocytes from peripheral blood and regulate mast cell and macrophage

bioeffector functions once present in neoplastic tissue. FcRg deficiency not

only impairs the protumorigenic properties of mast cells and macrophages

but also reprogram macrophages leading to enhanced angiostatic and M1

bioactivity.
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obtained with Immune Panel TaqMan arrays have been performed using an

implemented covariance model, as previously described (Pucci et al., 2009).

Statistical Analyses
Statistical analyses were performed using GraphPad Prism version 4 and/or

InStat version 3.0a forMacintosh (GraphPadSoftware). Specific tests included

Mann-Whitney (unpaired, nonparametric, two-tailed), unpaired t test, Fisher’s

exact test, chi-square test, and log rank analysis. p values < 0.05 were consid-

ered statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, Supplemental Experimental

Procedures, and one table and can be found with this article online at

doi:10.1016/j.ccr.2009.12.019.
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Figure S1. Generation of B cell-deficient HPV16 mice (accompanies Figure 1) 
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Figure S2. Anti-E7 IgG quantification (accompanies Figure 2) 
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Figure S3. Deficient carcinogenesis in HPV16/FcR -deficient mice (accompanies Figure 4) 

AG! M88P#)%)3$%(]$7()#!)*!^3I %4*7! :$#4%G=! ^3 IM! E8(<<%4!:$#4%G! $#<!^3 IMMBMMM! E9(J;7! :$#4%G!

4U:94''()#! (#! >?@1AB^3 I
DBD
! 8(34! $7! FD8)! )*! $J4H! ! X)%(<! %(#4=! 4:(<498$%D<498$%! (#749*$34\!

4:(<498('=!4\!<498('=!<\!'3$%4!5$9=!S-! 8H!



!

 5

BG!I4:94'4#7$7(Q4!<)7D:%)7!J9$:;'!';)6(#J!/0FS./0F25./0RD!_`!34%%'!(#!:948$%(J#$#7!'T(#!)*!

>?@1A=!>?@1ABC>
DBD
=!$#<!>?@1AB^3I !8(34!EFD8)GH!!

CG!0(**494#7($%! 4U:94''()#! )*! ^3 IM! $#<!^3 IMMM! 5&!_`! 34%%'! (#! :948$%(J#$#7! 'T(#! )*!>?@1A!

E94<G=!>?@1ABC>
DBD!
E5%P4G!$#<!>?@1AB^3I

DBD
!EJ944#G!8(34!$7!FD8)!)*!$J4H!!_`!34%%'!6494!J$74<!

$'!%(Q4!/0FS
.
/0F25

.
/0R

D!
%4PT)3&74'H!!N94&!%(#4K!MJ!3)#79)%H!!

DG! M88P#)%)3$%(]$7()#! )*! /0113! $#<! ^FBa-D4U:94''(#J! 34%%'! (#! :948$%(J#$#7! 'T(#! )*!

>?@1AB^3 I
.BD
! $#<! >?@1AB^3 I

DBD
! 8(34! $7! FD8)! )*! $J4! E94<! '7$(#(#JGH! ! L;(74! %(#4! <4:(37'!

4:(<498$%D<498$%!(#749*$34\!4K!4:(<498('\!<K!<498('\!'3$%4!5$9=!S-! 8H!

E)!?9)74(#!%4Q4%'!)*!:9)DOO?2!(#!'T(#!4U79$37'!*9)8!EDGVO=!>?@1AB^3I .BD
!$#<!>?@1AB^3I

DBD
!

8(34!$''4''4<!5&!WVMX"H!!W99)9!5$9'!94:94'4#7!XWO=!$'749('T!EYG!(#<(3$74'!'7$7('7(3$%%&!'(J#(*(3$#7!

<(**494#34'!547644#!$J4D8$73;4<!8(34!E:!Z!-H-S=!O$##DL;(7#4&GH!!

F)!/(93P%$7(#J!MJ!%4Q4%'!6494!4Q$%P$74<!5&!WVMX"!(#!'49P8!*9)8!EDGVO=!>?@1A!EFD!$#<!AD8)G!

$#<! >?@1AB^3I
DBD
! EAD8)GH! ! W99)9! 5$9'! 94:94'4#7! XWO=! $'749('T! EYG! (#<(3$74'! '7$7('7(3$%%&!

'(J#(*(3$#7!<(**494#34'!6(7;!EDGVO!E:!Z!-H-S=!O$##DL;(7#4&GH 

 

 



!

 6

 
Figure S4. Lineage characteristics of CD11b+Gr1+/- myeloid cell subpopulations in 

premalignant skin, secondary lymphoid organs and blood of HPV16 mice (accompanies 

Figure 6) 
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Figure S5. Functional characterization of myeloid lineage cells infiltrating premalignant skin 

of HPV16 mice (accompanies Figure 7) 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Serum collection, immunoglobulin purification and biotinylation 
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Intradermal injection of concentrated immunoglobulins  
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IF-detection of antibody deposition 
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Immunohistochemistry 
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(#3P5$74<! 6(7;! 9$7! $#7(D8)P'4! /0R1! E1KS-=! +0! +()'3(4#34'G! $#<! 9$7! $#7(D8)P'4! [BF=! E1KS--=!

/4<$9%$#4!V$5'=!+P9%(#J7)#=!_/G!(#!-HSm!5%)3T(#J!5P**49!*)9!,!;9!$7!9))8!748:49$7P94H!!X437()#'!

6494! 7;4#! (#3P5$74<!6(7;! 5()7(#&%$74<! 9$55(7! $#7(D9$7! MJN! '43)#<$9&! $#7(5)<(4'! E1K,--=!@437)9!

V$5)9$7)9(4'G! *)9! FS! 8(#! $7! 9))8! 748:49$7P94H! ! X%(<4'! 6494! 'P5'4nP4#7%&! (#3P5$74<! 6(7;!

;)9'49$<(';!:49)U(<$'4!3)#jPJ$74<!$Q(<(#!3)8:%4U!E"+/!W%(74=!@437)9!V$5)9$7)9(4'G!*)9!R-!8(#=!

*)%%)64<!5&! (#3P5$7()#!6(7;!^$'7!R=R!<($8(#)54#](<(#4! E0"+=!@437)9!V$5)9$7)9(4'GH! !X437()#'!

6494! 3)P#749'7$(#4<! 6(7;! 847;&%! J944#=! <4;&<9$74<=! $#<! 8)P#74<! 6(7;! /&7)'4$%! A-! Ec;498)!

^(';49GH! !c)!<47437!^3 ID4U:94''(#J!(88P#4!34%%'=! 7(''P4!'437()#'!6494!(#3P5$74<!6(7;!9$7!$#7(D

8)P'4!/0FS!E1KS--=!+0!?;$98(#J4#G!$#<!^3 IMDMMM!E1KS--=!Io0!X&'748'=!O(##4$:)%('=!O_G!

$#<!:9)34''4<!$'!<4'39(54<!$5)Q4H!!>$8'749!$#7(D8)P'4!/0113!E1KS-=!+0!?;$98(#J4#G!$#<!9$7!

$#7(D8)P'4! ^FBa-! E1KS-=! Io0! X&'748'G! 6494! P'4<! 7)! <47437! <4#<9(7(3! 34%%'! $#<!8$39):;$J4'!

94':437(Q4%&H!!"%%!(88P#)%)3$%(]$7()#!4U:49(84#7'!6494!94:4$74<!)#!8P%7(:%4!7(''P4!'437()#'!$#<!

(#3%P<4<! #4J$7(Q4! 3)#79)%'! *)9! <47498(#$7()#! )*! 5$3TJ9)P#<! '7$(#(#J=! 6;(3;! 6$'! #4J%(J(5%4H!!

?;)7)J9$:;'! 6494! 3$:7P94<! $7! ;(J;D8$J#(*(3$7()#! EF-mG! )#! $! V4(3$! 0ODIm"! 8(39)'3):4!

$77$3;4<! 7)! $! V4(3$! <(J(7$%! 3$849$! EV4(3$! O(39)'&'748G! ):49$74<! 5&! e:4#V$5! ')*76$94p!
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EM8:9)Q('()#=!L$%7;$8=!O"GH  qP$#7(7$7(Q4!$#$%&'('!)*! (##$74! (88P#4!34%%'!6$'!:49*)984<!5&!

3)P#7(#J!34%%'!(#!*(Q4!;(J;D:)649!*(4%<'!EF-mG!:49!$J4D8$73;4<!7(''P4!'437()#!*9)8!*(Q4!8(34!:49!

J9)P:H!!0$7$!:94'4#74<!94*%437!7;4!84$#!7)7$%!34%%!3)P#7!:49!*(4%<!*9)8!7;4!Q4#79$%!4$9!%4$*%47H!!!

!

Determination of keratinocyte proliferation index 

O(34! 9434(Q4<! (#79$:49(7)#4$%! (#j437()#'! )*! 59)8)<4)U&P9(<(#4! E+9<d\! I)3;4! 0($J#)'7(3'=!

M#<($#$:)%('=!M_G!<('')%Q4<!(#!?+X!ES-! J!:49!J!)*!8)P'4!5)<&!64(J;7G!2-!8(#!:9()9!7)!'$39(*(34H!!

SD 8! 7;(3T! :$9$**(#! '437()#'!6494! <4:$9$**(#(]4<! (#! U&%4#4=! 94;&<9$74<! (#! J9$<4<! 47;$#)%=! $#<!

'P5j4374<!7)!$#7(J4#!9479(4Q$%!5&!'74$8!;4$7(#J!(#!/(79$p!$#7(J4#!9479(4Q$%!')%P7()#!E+()N4#4U=!

X$#! I$8)#=! /"GH! ! +9<dD:)'(7(Q4! 34%%'! 6494! <474374<! $33)9<(#J! 7)! 8$#P*$37P949'!

943)884#<$7()#'!P'(#J!7;4!+9<d!V$54%(#J!`(7!MM!EI)3;4GH!!+9(4*%&=!+9<d!'7$(#(#J!6$'!94Q4$%4<!

P'(#J! 7;4!3;9)8)J4#!@437)9!I4<!$%T$%(#4!:;)':;$7$'4! 'P5'79$74! E@437)9!V$5)9$7)9(4'GH! !X%(<4'!

6494!7;4#!3)P#749'7$(#4<!6(7;!847;&%!J944#H! !?;)7)J9$:;'!6494!3$:7P94<!$7!;(J;D8$J#(*(3$7()#!

EF-mG!)#!$!V4(3$!0ODIm"!8(39)'3):4!$'!<4'39(54<!$5)Q4H!!c;4!:9)%(*49$7(Q4!(#<4U!E:4934#7$J4!

)*! +9<dD:)'(7(Q4! #P3%4(! )Q49! 7;4! 7)7$%! #P8549! )*! T49$7(#)3&74'G! 6$'! nP$#7(*(4<! (#! *(Q4! ;(J;D

:)649!*(4%<'!:49!7(''P4!'437()#!$#<!(#3%P<4<!*(Q4!8(34!:49!J9)P:H!!

!

Flow cytometry 

W$9! 'T(#! *9)8!?+XD:49*P'4<!8(34!6$'!8$#P$%%&!8(#34<!P'(#J! '3('')9'=! *)%%)64<!5&! $!R-!8(#!

4#]&8$7(3! <(J4'7()#! 6(7;! ,H-! 8JB8%! 3)%%$J4#$'4! "! EI)3;4G! $#<! 1H-! 8JB8%! >&$%P9)#(<$'4!

EL)97;(#J7)#=! V$T46))<=! _CG! (#! '49P8D*944! 0P%5433)g'! 8)<(*(4<! 4$J%4'! 84<(P8! E0OWOG!

EM#Q(79)J4#G!$7!R[
)
/!P'(#J!3)#7(#P)P'!'7(99(#J!3)#<(7()#'H! !c;4!<(J4'7!6$'!nP4#3;4<!5&!$<<(#J!

0OWO!3)#7$(#(#J!1-k!^+X!EM#Q(79)J4#G!$#<!6$'!'P5'4nP4#7%&!*(%7494<!7;9)PJ;!$![-Di8!#&%)#!

*(%749!E^$%3)#GH!!c)!:94Q4#7!#)#D':43(*(3!5(#<(#J=!34%%'!6494!(#3P5$74<!*)9!1-!8(#!$7!F
)
/!6(7;!9$7!

$#7(D8)P'4! /01AB/0R,! 8"5! E1K,--=! +0! +()'3(4#34G! (#! ?+X! 3)#7$(#(#J! 1H-! k! +X"H!!

XP5'4nP4#7%&=!34%%'!6494!6$';4<!$#<!(#3P5$74<!*)9!,-!8(#!6(7;!S-! %!)*!*%P)9):;)94D3)#jPJ$74<!

$#7(D8)P'4! $#7(5)<(4'\! +,,-! EI"RDA+,G=! /0R4! E1FSD,/11G=! /0F! EA`1HSG=! /0a$! ESRDAH[G=!

/0115! EO1B[-G=! /0113! E_F1aG=! /01F! EX$,DaG=! /012! EO+12D1G=! /0R1! EOW/! 1RHRG=! /0FF!

EMO[G=!/0FS!ER-D^11G=!/0a-!E1AD1-"1G=!/0aA!ENV1G=!/011S!E"^X2aG=!/011[!E,+aG=!^FBa-!

E+OaG=! ^3 IM! $%:;$! EO"ID1G=! ^3 IMMBMMM! E2RG=! ^3J$88$I! MMM! E,[S--RG=! N9D1! EI+ADa/SG=!

O>/MM!EOSB11FH1SH,G!E$%%!*9)8!4+()'3(4#34=!X$#!0(4J)=!/"G!/0AF!$!$#<!5!E^3 IM\!?W\!mSFD
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SB[H1G=!/01,F!EO1G=!O>/M!E`>11FG!E*9)8!+0D?;$98(#J4#G=!$#<!:)%&3%)#$%!$#7(D^3 IMMMB/01A!

E?W\!Io0!X&'748'GH! !"#7(5)<(4'!6494!P'4<!$7!1K,--!<(%P7()#!(#!?+X!3)#7$(#(#J!1k!+X"H! !c)!

<4%(#4$74! 547644#! Q($5%4! $#<! <4$<! 34%%'=! [D$8(#)D$37(#)8&3(#! 0! E[D""0\! 1K1-\! +0!

+()'3(4#34'G!6$'!P'4<H!!0$7$!$3nP('(7()#!6$'!:49*)984<!)#!$!^"/X/$%(5P9!P'(#J!/4%%qP4'7?9)!

')*76$94! E+0!+()'3(4#34'G! $#<! $#$%&'('!6$'! :49*)984<! P'(#J!^%)6C)! ')*76$94! :9)J9$8! Ec944!

X7$9!M#3=!"';%$#<=!eIGH!!

!

Leukocyte isolation 

M88P#4!34%%'!6494!(')%$74<!*9)8!#4):%$'7(3!'T(#=!%&8:;!#)<4=!$#<!':%44#!5&!4(7;49!*%)6!')97(#J!

)9!8$J#47(3!')97(#JH!!?94:$9$7()#!)*!'(#J%4!34%%!'P':4#'()#'!*9)8!'T(#!;$'!544#!<4'39(54<!$5)Q4H!

X(#J%4! 34%%! 'P':4#'()#'! *9)8! %&8:;!#)<4'!)9! ':%44#'!6494!:94:$94<!5&!:$''(#J! 7(''P4! 7;9)PJ;!

[-D 8!#&%)#!'79$(#49'!E^$%3)#GH!!/4%%'!6494!7;4#!(#3P5$74<!*)9!1-!8(#!$7!Ff/!6(7;!,HFN,!E1K,--G!

(#!?+X!3)#7$(#(#J!1k!)*!+X"!7)!:94Q4#7!#)#':43(*(3!$#7(5)<&!5(#<(#JH!!XP5'4nP4#7%&=!34%%'!6494!

(#3P5$74<! *)9! ,-! 8(#! 6(7;! $::9):9($74! *%P)94'34#7! :9(8$9&! $#7(5)<(4'! 7;$7! (#3%P<4<! $#7(DN9D1!

EI+ADaNSG=!D/0115!E2RG=!D/0113!E_F1aG!$#<B)9!D^FBa-!E+Oa=!4+()'3(4#34G!$7!1K,--!<(%P7()#=!

<4:4#<(#J!)#!7;4!:):P%$7()#!7)!54!(')%$74<H!c)!4U3%P<4!#)#DQ($5%4!34%%'=!'(#J%4D34%%!'P':4#'()#'!

6494! %$54%4<! 6(7;! [D""0H! ! X4%4374<! 34%%'! 6494! 7;4#! *%)6! ')974<! P'(#J! $! ^"/X"9($! P'(#J!

@$#7$J4! 0(@$! ')*76$94! E+0! +()'3(4#34'GH! ! /0F
.
! $#<! /0a

.
! ':%4#)3&74'! 6494! (')%$74<! P'(#J!

8$J#47(3! 54$<! '4%437()#! $33)9<(#J! 7)! 8$#P*$37P94'! ':43(*(3$7()#'! EO(%74#&(! +()743=! "P5P9#=!

/"GH!

!

Indirect ELISA  

WVMX"! :%$74'! 6494! 3)$74<! 6(7;! 943)85(#$#7! :9)74(#! E1H-! iJB64%%G! $#<! <(%P74<! (#! ')<(P8!

3$95)#$74!5P**49!E:>!2HRGH!!c;4!*)%%)6(#J!:9)74(#'!6494!943)#'7(7P74<!$33)9<(#J!7)!8$#P*$37P949!

943)884#<$7()#'K!:P9(*(4<!>?@1A!W[! Eh&84<=!X)P7;!X$#!^9$#3('3)=!/"G=! %$8(#(#DM=! %$8(#(#D

M@=! 3)%%$J4#DM! EX(J8$D"%<9(3;G=! 3)%%$J4#DMM! E"UU)9$=! X$#! 0(4J)=! /"G=! $#<! 3)%%$J4#DM@! E+0!

+()'3(4#34'GH!!"*749!)Q49#(J;7!(#3P5$7()#!$7!Ff/=!:%$74'!6494!6$';4<!$#<!7;4#!5%)3T4<!P'(#J!1H-!

k!+X"! *)9! 1! ;9H! ! X49($%! 1-! *)%<! 'P334''(Q4! <(%P7()#'! )*! '49$! (#! ?+XDc644#B1H-!k!+X"!6494!

$<<4<!$#<!(#3P5$74<!$7!9))8!748:49$7P94!*)9!,!;9H!!?%$74'!6494!(#3P5$74<!6(7;!5()7(#&%$74<!J)$7!

$#7(D8)P'4! MJN! *)9! 1! ;9=! *)%%)64<! 5&! '794:7$Q(<(#D>I?! E"849';$8! +()'3(4#34'=!

+P3T(#J;$8';(94=!W#J%$#<G!*)9!R-!8(#=!$#<!<4Q4%):4<!6(7;!X(J8$!^"Xc!e?0!T(7!EX(J8$G!*)9!
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1-D8(#H! !W#]&8$7(3! $37(Q(7&!6$'! '7)::4<!P'(#J! 'P%*P9(3! $3(<! EROGH! !e:7(3$%! <4#'(7&! Ee0G!6$'!

84$'P94<! $7! FS-! #8! 6(7;! 6$Q4%4#J7;! 3)99437()#! '47! 7)! SF-! #8! )#! $! X:4379$O$U! RF-!

':4379):;)7)8)749! EO)%43P%$9! 04Q(34'=! XP##&Q$%4=! /"GH! ! "#7(5)<&! 3)#34#79$7()#'! 6494!

3$%3P%$74<!P'(#J!X)*7O$U!?9)!FH1!EO)%43P%$9!04Q(34'GH!

!

Immunoassays for MMP9, cytokines, CIC and Ig ELISA 

/)#<(7()#4<!84<(P8! $#<B)9! 7(''P4! %&'$74'! ES-! J! )*! :9)74(#G!6494! $#$%&]4<! *)9! %4Q4%'! )*! :9)D

OO?2=! OO?2! $#<! @WN^D"! EIo0! '&'748'G! P'(#J! (88P#)$''$&! 3)88493($%%&! $Q$(%$5%4!

$#7(5)<&D:$(9'=!$'!<4'39(54<!5&!7;4!8$#P*$37P949H!!e0!6$'!84$'P94<!$#<!$#$%&]4<!$'!<4'39(54<!

$5)Q4H!

c)!$#$%&]4!/M/=!WVMX"!6$'!:49*)984<!)#!:P9(*(4<!'49P8!P'(#J!7;4!/M/!O)P'4!WVMX"!`(7!

$33)9<(#J!7)!8$#P*$37P949g'!(#'79P37()#'!E"%:;$!0($J#)'7(3=!X$#!"#7)#()=!cmGH! !c;4!847;)<!('!

5$'4<!)#!7;4!':43(*(3!5(#<(#J!)*!/1n!7)!(88P#4!3)8:%4U4'=!*)%%)64<!5&!$!'43)#<$9&!'74:!6;494!

$::%(3$7()#!)*!$#7(DMJN!$#7(5)<(4'!3)#*(98'!7;4!:94'4#34!)*!/M/H!!c)!Q49(*&!:94'4#34!)*!/M/!(#!

'49P8=! $! ;(J;! '$%7! r3)#*(98$7()#! ')%P7()#s!6$'! $<<4<! 7)! <('')3($74! /1nD/M/! 5(#<(#JH! ! X49P8!

'$8:%4'! <(':%$&(#J! R-k!<4394$'4! (#! $5')95$#34! *)%%)6(#J! $<<(7()#! )*! r3)#*(98$7()#! ')%P7()#s!

6494! 3)#'(<494<! :)'(7(Q4! *)9! :94'4#34! )*!/M/H! ! /M/! %4Q4%'!6494! $%')! 4Q$%P$74<! P'(#J!/RDMJN!

WVMX"!6;494!:%$74'!6494! 3)$74<!6(7;!J)$7! $#7(D8)P'4!/R! EO?!+()84<(3$%'=! X)%)#=!e>G! $#<!

$#$%&]4<!$'!<4'39(54<!$5)Q4H!!

c)! $#$%&]4! MJ! %4Q4%'=! '49P8! WVMX"! 6$'! :49*)984<! $'! <4'39(54<! 5&! 7;4! 8$#P*$37P949g'!

943)884#<$7()#'!P'(#J!7;4!3%)#)7&:(#J!'&'748D>I?!T(7!EX)P7;49#+()743;=!+(98(#J;$8!"VGH!!!

!

Preparation of bone marrow-derived mast cells (BMMC) and bone marrow-derived 

macrophages (BMM) 

+)#4!8$99)6! 34%%'!6494! *%P';4<! )P7! )*! *48P9'! )*! FD644T! )%<!8(34! P'(#J! $! ,RDJ$PJ4! #44<%4H!!

/4%%'! 6494! 7;4#! 3P%7P94<! (#! I?OM! 1AF-! 'P::%484#74<! 6(7;! 1-k! ^+X=! ,H-! 8O! VDJ%P7$8(#4=!

1--dB8%! :4#(3(%%(#=! 1--! iJB8%! '794:7)8&3(#=! #)#D4''4#7($%! $8(#)! $3(<'=! 1FH,! 8O! D

8493$:7)47;$#)%!E3I?OMG=!7)!6;(3;!6$'!$<<4<!4(7;49!8P9(#4!943)85(#$#7!MVR!E*)9!+OO/=!R-!

#JB8%\! ?4:9)c43;=! I)3T&! >(%%=! _CG! )9! 8P9(#4! 943)85(#$#7! OD/X^! E*)9! +OO=! ,-! #JB8%\!

?4:9)c43;=! I)3T&! >(%%=! _CGH! ! 0(**494#7($7(#J! 8$'7! 34%%'! 6494! 3P%7P94<! )#34! :49! 644T! 5&!

79$#'*499(#J! #)#D$<;494#7! 34%%'! $#<! 94:%4#(';(#J! ;$%*! )*! 7;4! 84<(P8! 6(7;! $! *94';! )#4! (#! 7;4!
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:94'4#34!)*!MVR!E1-!#JB8%GH! !c)!Q49(*&!<(**494#7($7()#!)*!+OO/=!*%)6!3&7)8479(3!$#$%&'('!6$'!

:49*)984<! F! 644T'! %$749! 7)! $''4''! 4U:94''()#! )*! 8$'7! 34%%! 8$9T49'! /011[B3DT(7! $#<! ^3 ID1!

E4+()'3(4#34'GH! ! +OO/! <(**494#7($7()#! 6$'! *P97;49! $''4''4<! 6(7;! 7)%P(<(#4! 5%P4! *)9!

847$3;9)8$7(3!'7$(#(#JH!!0(**494#7($7(#J!8$39):;$J4'!6494!3P%7P94<!5&!79$#'*499(#J!#)#D$<;494#7!

34%%'!,F!;9!$*749!5)#4D8$99)6!34%%'!(')%$7()#!$#<!94:%4#(';(#J!7;4!84<(P8!6(7;!$!*94';!)#4!4Q49&!

Fa;H!+OO!<(**494#7($7()#!6$'!*P97;49!$''4''4<!5&!*%)6!3&7)8479&!4Q$%P$7()#!)*!^FBa-!$#<!/0FS!

4U:94''()#H!?P9(7&!6$'!P'P$%%&!t2[kH!!c;4!94'P%7(#J!:):P%$7()#'!6494!P'4<!547644#!644T'!F!$#<!

1,.  "%%!34%%!3P%7P94'!6494!8$(#7$(#4<!$7!R[f/!(#!$!;P8(<(*(4<!$78)':;494!6(7;!Sk!/e,H!!

!

Stimulation of leukocytes with IgG 

+OO/!6494!'7$9Q4<!*)9!F!;9!(#!3I?OM!84<(P8!(#!7;4!$5'4#34!)*!MVR=!*)%%)64<!5&!3P%7P9(#J!$7!

;(J;!<4#'(7&!ESU1-
A
!34%%'B!8%G!(#!3I?OM!84<(P8!3)#7$(#(#J!MVR!ESH-!#JB8%G!(#!3)85(#$7()#!6(7;!

MVF!E,-!#JB8%\!?4:9)c43;G!*)9!F!<$&'H! !+OO/!)9!^"/XD')974<!8&4%)(<!:):P%$7()#!6494!7;4#!

6$';4<=!94'P':4#<4<!$7!S!U!1-
S
!34%%'B8%!(#!0OWO!'P::%484#74<!6(7;!1H-!k!+X"=!$#<!(#3P5$74<!

6(7;!,HFN,!E1-! JB8%G!*)9!1-!8(#!$7!Ff/H!!c)!(#<P34!39)''D%(#T(#J=!34%%'!6494!7;4#!6$';4<!$#<!

(#3P5$74<!6(7;!,S! JB8%!J)$7!^E$5 ,G!$#7(D9$7!MJN!EC$3T')#!M88P#)94'4$93;=!L4'7!N9)Q4=!?"G!(#!

7;4!:94'4#34!)9!$5'4#34!)*!7;4!8$'7!34%%!'7$5(%(]49!39)8)%&#!E1-! O\!X(J8$GH!!/4%%'!6494!:%$74<!

$7! 1-
S
! 34%%'B,--! %! (#! 2AD64%%! *%$7D5)77)8!:%$74'! *)9! ,F!;9! $7! R[f/H! !/)#<(7()#4<!84<(P8!6$'!

3)%%4374<=!34#79(*PJ4<!7)!948)Q4!34%%P%$9!<459('=!$#<!'7)94<!$7!D[-f/!*)9!'P5'4nP4#7!$#$%&'('H!

!

T cell activation assay 

O$J#47(3! 54$<! EO(%74#&(! +()743;G! ')974<! /0F
.
! )9! /0a

.!
c! %&8:;)3&74'! 6494! $<<4<! 7)! /0R!

3)$74<! :%$74'! E+0! +()'3(4#34'G! $7! $! 3)#34#79$7()#! )*! S--=---! 34%%'B8%! (#! :94'4#34! )*! /0,a!

$#7(5)<&! ESH-! 8JB8%=! 4+()'3(4#34G! (#! I?OM! 1AF-! 'P::%484#74<! 6(7;! 1-k! ^+X=! ,H-! 8O! VD

J%P7$8(#4=! 1--!dB8%! :4#(3(%%(#=! 1--! iJB8%! '794:7)8&3(#=! #)#D4''4#7($%! $8(#)! $3(<'=! $#<! 1FH,!

8O!,D8493$:7)47;$#)%H c!34%%'!6494!3)D3P%7P94<!*)9![,!;9!6(7;! (#394$'(#J!9$7()!)*!*%)6D')974<!

/0115
.
N91

.
!$#<!1a!;9!54*)94!7498(#$7()#!)*!7;4!$''$&!+9<d!E1H-! OG!6$'!$<<4<!7)!7;4!3P%7P94!

84<(P8H! !+9<d!(#3)9:)9$7()#!6$'!4Q$%P$74<!P'(#J!+9<d!/4%%!?9)%(*49$7()#!"''$&!$33)9<(#J! 7)!

8$#P*$37P94'!':43(*(3$7()#'!EO(%%(:)94GH!

!
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Endothelial cell chemotaxis assays 

/)#*%P4#7!;P8$#!P85(%(3$%!Q4(#!4#<)7;4%($%!34%%'!E>d@W/=!"c//G!8)#)%$&49'!6494!;$9Q4'74<!

$#<! 94D'P':4#<4<! (#!^D1,`!84<(P8! E"c//G! 'P::%484#74<!6(7;!1H-!k!+X"H! !>d@W/'!6494!

7;4#! '44<4<! $7! 1-
S
! 34%%'! E1--! %G! )#7)! 7;4! 7):! 3;$8549! )*! 79$#'64%%! *(%749'! EaD 8=! /)9#(#J=!

/)9#(#J=!_uGH!!c;4!*(%749'!6494!7;4#!:%$34<!(#!$!,FD64%%!:%$74!7;$7!3)#7$(#'!3)#<(7()#4<!84<(P8!

3)%%4374<!*9)8!34%%!')974<!/0115
.
N91

.BD
!'P5:):P%$7()#'!'7(8P%$74<!6(7;!V?X!E1-!#JB8%\!X(J8$G=!

M^_ BMV1R! E1-!#JB8%G=!)9! MJN! E,S! JB8%G=! $'!64%%! $'! 3)#79)%! $#<! MJND'7(8P%$74<!+OO/!EA--!

%GH! !"<<(7()#!)*! 3;48)7$37(3! *$37)9'=! (#3%P<(#J! 9@WN^1AS! E1--!#JB8%=!Io0!X&'748'G!)9!1-k!

^+X!7)!%)649!3;$8549'!'49Q4<!$'!:)'(7(Q4!3)#79)%'H! !c)!Q49(*&!7;$7!>d@W/D(#<P34<!8(J9$7()#!

6$'!@WN^D<4:4#<4#7=!$! 9$7!8)#)3%)#$%! *P#37()#D5%)3T(#J!$#7(5)<&!$J$(#'7!@WN^I,!E0/1-1\!

1--! JB8%\!d/X^!>&59(<)8$!/)94G!6$'!$<<4<!7)! %)649!3;$8549'!6;4#!(#<(3$74<H! !/;$8549'!

6494!(#3P5$74<!*)9!a!;9!$7!R[f/!(#!$!/e,!(#3P5$7)9H!!_)#D8(J9$7(#J!34%%'!6494!J4#7%&!948)Q4<!

*9)8! 7;4! *(%749! 'P9*$34! P'(#J! 3)77)#! '6$5'H! ! M#'497'!6494! *(U4<! (#! 3)%<!847;$#)%=! *)%%)64<! 5&!

(#3P5$7()#!6(7;!0(**DqP(3T!'7$(#!EMOW+!M#3=!X$#!O$93)'=!/"GH!!M#'497'!6494!7;4#!8)P#74<!6(7;!

/&7)'4$%!A-! Ec;498)!^(';49GH! !>d@W/!8(J9$7()#! 7)! 7;4!P#<49'(<4!)*! 7;4! 79$#'64%%!84859$#4!

6$'!nP$#7(7$74<!5&!4#P849$7(#J!7;4!#P8549!)*!8(J9$74<!34%%'!(#!*)P9!9$#<)8!*(4%<'!E1,SU!7)7$%!

8$J#(*(3$7()#G!:49!(#'497H!!

c)!4Q$%P$74!/m/V1-!$#<!11D<4:4#<4#7!$#7(D$#J()J4#(3!$37(Q(7(4'=!>d@W/!6494!3P%7P94<!

*)9! Fa! ;9! (#! 3)8:%474! ^D1,`! 84<(P8! 'P::%484#74<! 6(7;! /m/V1-! )9! /m/V11! E1--! #O\!

?4:9)743;GH!!>d@W/!:94D794$74<!6(7;!/m/V1-!$#<!11!6494!7;4#!'44<4<!$7!1-
S
!34%%'!)#7)!7;4!7):!

3;$8549! )*! 79$#'64%%! *(%749'! EaD 8G! (#! '49P8! *944! 0OWO! 84<(P8! 3)#7$(#(#J! -H1k! +X"H!!

"<<(7()#! )*!@WN^1AS! E1--! #JB8%G! )9! 1-k! ^+X! 7)! 7;4! %)649! 3;$8549! 3)8:$9784#7! '49Q4<! $'!

3;48)$779$37$#7'!*)9!>d@W/!8(J9$7()#H!!c;4!3;$8549'!6494!7;4#!(#3P5$74<!*)9!F!;9!$7!R[
)
/!(#!

Sk!/e,H!!

!

Leukocyte chemotaxis assay 

^)9!34%%!8(J9$7()#=!?+V'!6494!3)%%4374<!*9)8!:49(:;49$%!5%))<!)*!>?@1A!8(34!*)%%)6(#J!3$9<($3!

:P#37P94=!$#<!'44<4<!E1-
S
!34%%'B!1--! %!0OWO!3)#7$(#(#J!-H1k!+X"G!)#7)!7;4!7):!3;$8549!)*!

79$#'64%%! *(%749'! ERD 8\! /)9#(#JGH! ! ^(%749'! 6494! :%$34<! (#! $! ,FD64%%! :%$74! 7;$7! 3)#7$(#'!

3)#<(7()#4<!84<(P8!(')%$74<!*9)8!3)#79)%!)9!MJND'7(8P%$74<!+OO/H!a!;9!*)%%)6(#J!(#3P5$7()#=!

7;4!%)649!3;$8549!3)8:$9784#7'!6494!*(U4<!(#!3)%<!847;$#)%=!*)%%)64<!5&!(#3P5$7()#!6(7;!0(**D
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qP(3T! '7$(#! EMOW+! M#3HGH! ! V4PT)3&74! 8(J9$7()#! 7)! 7;4! %)649! 3;$8549! 6$'! nP$#7(7$74<! 5&!

4#P849$7()#!)*!7;4!#P8549!)*!7;4!#P8549!)*!34%%'!(#!SDa!9$#<)8!*(4%<'!)*!Q(46!:49!64%%!P'(#J!$!

VP8$9! 8(39)'3):4! E1--U! 7)7$%! 8$J#(*(3$7()#GH! ! X$8:%4'! 6494! 9P#! (#! 79(:%(3$74'! *)9! 4$3;!

4U:49(84#7$%!J9)P:H!

!

Angiogenesis matrigel plug assay 

O$79(J4%!8$79(U!6(7;! 94<P34<! J9)67;! *$37)9! 3)8:)'(7()#! E+0!+()'3(4#34'G!6$'! <(%P74<! 1K1! (#!

3)%<! ?+XH! ?0X/S! 34%%'! E/%)#4! AG!6494! 94D'P':4#<4<! $7! $! <4#'(7&! )*! 1HSU1-
A
B1--! %! $#<! :94D

8(U4<!6(7;!<(%P74<!O$79(J4%!(#!$!7)7$%!Q)%P84!)*!R--!i%H!O$79(J4%!6$'!(#j4374<!'H3H!(#!7;4!Q4#79$%!

'(<4!)*![!644T'!)%<!8(34!(#!7;4!J9)(#!$94$H!!"7!<$&!,A!:)'7D(#j437()#=!O$79(J4%!:%PJ'!$::4$94<!$'!

%P8:'!)#! 7;4!Q4#79$%!'(<4!)*!8(34H! !O(34!54$9(#J!:%PJ'!E#bS!:49!J9)P:G!6494!'$39(*(34<=!:%PJ'!

6494!943)Q494<!$#<!*(U4<!(#!1-k!#4P79$%D5P**494<!*)98$%(#!$#<!:$9$**(#!4854<<4<H!!c;4!4U74#7!

)*!#4)Q$'3P%$9(]$7()#!6$'!4Q$%P$74<!5&!'7$(#(#J!*)9!9$7!$#7(D8)P'4!/0R1!E+0!5()'3(4#34'GH!!

 

In vivo tumorgenicity assays 

?0X/S!34%%'!E/%)#4!AG!'P':4#<4<!(#!1--! %!)*!<(%P74<!3)%<!O$79(J4%!(#!?+X!E1K1G!E-HSU1-
A
!34%%'G!

6494!(#)3P%$74<!'H3H!(#!7;4!*%$#T'!)*![!644TD)%<!8(34H!!cP8)9!<(84#'()#'!6494!84$'P94<!$7!,D

<$&! (#749Q$%! P'(#J! $! <(J(7$%! 3$%(:49=! $#<! 7P8)9! Q)%P84! 6$'! 3$%3P%$74<! P'(#J! 7;4! 4nP$7()#K! @!

E88
R
G! b! $! U! 5

,
B,=! 6;494! $! ('! 7;4! %$9J4'7! <($84749! $#<! 5! ('! 7;4! '8$%%4'7! <($84749H! ! M#! ')84!

4U:49(84#7'=!?0X/S!34%%'!6494!3)D79$#':%$#74<!6(7;!/0115
.
N91

.BD
!')974<!*9)8!4$9'!$#<!':%44#'!

)*!>?@1AB^3 I
DBD
!Q49'P'!>?@1AB^3 I

.BD
!8(34!)9!MJND'7(8P%$74<!+OO/!$7!$!9$7()!)*!1K1=!RK1!)9!

1-K1!E?0X/SK34%%'GH!!

!

Individual qPCR assays 

-.')/012$,H!XT(#!:(434'!*9)8!?+XD:49*P'4<!8(34!6494!'#$:D*9)]4#!$#<!J9)P#<! 7)!$!:)6<49! (#!

%(nP(<! #(79)J4#H! ! c)7$%! 8I_"! 6$'! :P9(*(4<! *)%%)6(#J! I_4$'&! O(39)BO(#(! T(7! JP(<4%(#4'!

Eq($J4#GH!!I_"!6$'!nP$#7(*(4<!6(7;!$!_$#)09):!_0D1---!(c;498)!^(';49!X3(4#7(*(3) $#<!9479)D

79$#'39(54<!6(7;!XP:49X39(:7!MMMH!!?9(849'!':43(*(3!*)9!34%)56=!34%&7=! "8%9$,!EXP:49$99$&G!6494!

P'4<!$#<!94%$7(Q4!J4#4!4U:94''()#!<47498(#4<!P'(#J!Ic,!I4$%Dc(8478!Xu+I!N944#BIem!?/I!

8$'749!8(U!EXP:49$99$&G!)#!$#!"+M![2-->c!nP$#7(7$7(Q4!?/I!8$3;(#4!E"+M!5()'&'748'GH!c;4!

3)8:$9$7(Q4!7;94';)%<!3&3%4!847;)<!6$'!P'4<!7)!3$%3P%$74!*)%<!3;$#J4!(#!J4#4!4U:94''()#=!6;(3;!
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6$'!#)98$%(]4<!7)! "8%9$,!$'!94*494#34!J4#4H!

:)';"1'&9/<0 )/+2'%=9/10 >&'#0 /8&0 9$11+/H! X(#J%4! c$nO$#! J4#4! 4U:94''()#! $''$&'! E"+M!

5()'&'748'G!6494!P'4<!7)!nP$#7(*&!79$#'39(:7'!*)9!7;4!*)%%)6(#J!J4#4'K!?&(5=!3%)5=!3<5@7=!A&%5!

$#<!B#5H!!Xu+WI!N944#!3;48('79&!E"+M!5()'&'748'G!6$'!P'4<!7)!nP$#7(*&!79$#'39(:7'!*)9!3%)5C!

$#<!3%)!!H!!c;4!3)8:$9$7(Q4!7;94';)%<!3&3%4!847;)<!6$'!P'4<!7)!3$%3P%$74!*)%<!3;$#J4!(#!J4#4!

4U:94''()#=!6;(3;!6$'!#)98$%(]4<!7)! "!#0$'!94*494#34!J4#4H!

!

Low-density qPCR arrays 

^)9! 4$3;! 34%%! ')97(#J! '4''()#=! 4$9! 7(''P4! :))%4<! *9)8! FDA! ?+XD:49*P'4<!8(34!6$'! 4U3('4<! $#<!

8(#34<!(#7)!'(#J%4D34%%!'P':4#'()#'!$#<!'4%4374<!%(#4$J4'!6494!*%)6D')974<!7)!)57$(#!S-D,--=---!

34%%'!:49!34%%!:):P%$7()#H!!c)7$%!8I_"!6$'!:P9(*(4<!*)%%)6(#J!I_4$'&!O(39)BO(#(!T(7!JP(<4%(#4'!

Eq($J4#GH!!I_"!6$'!nP$#7(*(4<!6(7;!$!_$#)09):!_0D1---!(c;498)!^(';49!X3(4#7(*(3) $#<!9479)D

79$#'39(54<! 6(7;! XP:49X39(:7! MMMH! ! n?/I! $#$%&'4'! 6494! :49*)984<! 6(7;! c$nO$#! $''$&'! P'(#J!

M88P#4! ?$#4%! c$nO$#! $99$&! E"::%(4<! +()'&'748'=! *)9! *%)6D')974<! %4PT)3&74'! :):P%$7()#'G=!

84$'P9(#J!7;4!4U:94''()#!)*!2A!J4#4'!(#!,DR!743;#(3$%!94:%(3$74'!E?P33(!47!$%H=!,--2GH!!1--!#JD1H-!

J! )*! 30_"!6$'! %)$<4<! )#! 4$3;! $99$&H! ! n?/I!6$'! 9P#! *)9! F-! 3&3%4'! E%)6D<4#'(7&! $99$&'G! (#!

'7$#<$9<!8)<4!P'(#J!$#!"+M[2-->c!$::$9$7P'!E"::%(4<!+()'&'748'GH!!

!

Collection of raw data and determination of gene expression 

c;4!X0X!,H,H1!')*76$94!6$'!P'4<!7)!4U79$37!9$6!<$7$!E/c!$#<!9$6!*%P)94'34#34GH!!c;4!<(**494#34!

E /cG!547644#!7;4!7;94';)%<!3&3%4!E/cG!)*!4$3;!J4#4!$#<!7;$7!)*!7;4!94*494#34!J4#4'!ED!#!)9! "

8%9$,G!6$'!P'4<!7)!<47498(#4!J4#4!4U:94''()#H!!"!7;94';)%<!)*!-H1!6$'!P'4<H!!c;4!%)649!7;4! /c=!

7;4!;(J;49!7;4!J4#4!4U:94''()#!%4Q4%H!!

!

Statistical analysis of gene expression data 

c)!3$%3P%$74!7;4!*)%<D3;$#J4!)*!J4#4!4U:94''()#!547644#!>?@1AB^3I
DBD!
$#<!>?@1AB!^3I

.BD!
34%%!

:):P%$7()#'=! 64! P'4<! $#! (8:%484#74<! 3)Q$9($#34! 8)<4%! E"_/e@"G=! $'! :94Q()P'%&! <4'39(54!

E?P33(!47!$%H=!,--2GH!!c;('!8P%7(:%4!94J94''()#!$::9)$3;!('!$(84<!$7!8)<4%%(#J!j)(#7%&!7;4!(8:$37!

)*!<(**494#7!4U:%(3$7(Q4!3)Q$9($74'!)#!7;4!)P73)84!)*!(#7494'7H!M#!7;('!3$'4=!7;4!)P73)84!Q$9($5%4!('!

3E=!$#<!7;4!3)Q$9($74'!$94!7;4!WU:49(84#7!E(H4H!4$3;!5()%)J(3$%!94:%(3$74\!FG4HG=!7;4!N4#4!EFI/,/G=!

$#<!7;4!J4#47(3!5$3TJ9)P#<!E(H4H!>?@1AB^3I
.BD
=!>?@1AB^3I

DBD
\!FDIGH! !c;4!8P%7(:%4!94J94''()#!
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*)98P%$!94$<'!$'!*)%%)6'K!

3E0J0 60K0 50L0FG4H0K0 !0L0FDI0K00 70L0FDIMI/,/0K0 0

6;494!/c!('!7;4!7;94';)%<!3&3%4=! $!$94!7;4!3)4**(3(4#7'!3$%3P%$74<!5&!7;4!8)<4%!7;$7!94:94'4#7'!7;4!

(8:$37!)*!7;4!94':437(Q4!nP$%(7$7(Q4!Q$9($5%4!F$=! !('!7;4!94'(<P$%!499)9H!!m(!('!'47!7)!]49)!6;4#!WU:!

b!r*(9'7!94:%(3$74s=!N4#4!b!rD!#N=!$#<!+N!b!r>?@1AsH!!

c;4! (8:%484#74<! 8)<4%! %4$<'! 7)! $! :9)34<P94! 4nP(Q$%4#7! 7)! 74'7! 7;4! /c! E4nP$%! 7)! 7;4!

(#749$37()#!+NvN4#4G!EuP$#!47!$%H=!,--AGH!!c;4!$<Q$#7$J4!)*!7;('!:9)34<P94!6(7;!94':437!7)!76)D

5&D76)! 7D74'7! 3)8:$9(')#'! %(4'! )#! 7;4! j)(#7! #$7P94! )*! 7;4!8)<4%(#J! )*! $%%! 3)Q$9($74'! (#3%P<4<H!!

c;('!$%%)6'!$Q)(<(#J! 7;4!;(J;! *94nP4#3&!)*! 7&:4! M!499)9'! E*$%'4!:)'(7(Q4! 94'P%7'G!6;4#!8P%7(:%4!

3)8:$9(')#'!$94!:49*)984<H!W'7(8$7()#!743;#(nP4!('!5$'4<!)#!V(T4%(;))<!I$7()!c4'7H!!c;4!8)<4%!

('! (8:%484#74<! (#! ID'7$7('7(3$%! ')*76$94! EQ49'()#! ,HAH1\! '44! ;77:KBB666HID:9)j437H)9JGH!!

X(J#(*(3$#34!%4Q4%!('!3;)'4#!$7! !b!-H-SH!
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SUPPLEMENTAL REFERENCES 

/)P''4#'=!VH!OH=!>$#$;$#=!0H=!$#<!"954(7=!CH!OH!E122AGH!N4#47(3!:94<(':)'(7()#!$#<!:$9$84749'!

)*!8$%(J#$#7!:9)J94''()#!(#!`1FD!>?@1A!79$#'J4#(3!8(34H!"8!C!?$7;05OP=!1a22D121[H!
/)P''4#'=!VH!OH=!I$&8)#<=!LH!LH=!+49J49'=!NH=!V$(JDL45'749=!OH=!+4;94#<7'4#=!eH=!L495=!hH=!

/$PJ;4&=!NH!>H=!$#<!>$#$;$#=!0H!E1222GH!M#*%$88$7)9&!8$'7!34%%'!P:D94JP%$74!$#J()J4#4'('!

<P9(#J!'nP$8)P'!4:(7;4%($%!3$93(#)J4#4'('H!N4#4'!04Q057=!1Ra,D1R2[H!
?P33(=!^H=!@4##49(=!OH!"H=!+(]($7)=!0H=!_)#('=!"H=!O)(=!0H=!X(3$=!"H=!0(!X49()=!/H=!_$%<(#(=!VH=!$#<!

04! ?$%8$=! OH! E,--2GH! "! <('7(#JP(';(#J! J4#4! '(J#$7P94! ';$94<! 5&! 7P8)9D(#*(%79$7(#J! c(4,D

4U:94''(#J! 8)#)3&74'! EcWO'G=! 5%))<! w94'(<4#7w! 8)#)3&74'! $#<! 4859&)#(3! 8$39):;$J4'!

'PJJ4'7'!3)88)#!*P#37()#'!$#<!<4Q4%):84#7$%!94%$7()#';(:'H!+%))<055O=!2-1D21FH!
uP$#=!CH!XH=!I44<=!"H=!/;4#=!^H=!$#<!X746$97=!/H!_H=!C9H! E,--AGH!X7$7('7(3$%!$#$%&'('!)*! 94$%D7(84!

?/I!<$7$H!+O/!+()(#*)98$7(3'0C=!aSH!
!

!
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