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Physiological COX-2 Expression in Breast Epithelium
Associates with COX-2 Levels in Ductal Carcinoma in Situ
and Invasive Breast Cancer in Young Women
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Cyclooxygenase-2 (COX-2) overexpression is implicated in increased risk and poorer outcomes in breast
cancer in young women. We investigated COX-2 regulation in normal premenopausal breast tissue and
its relationship to malignancy in young women. Quantitative COX-2 immunohistochemistry was per-
formed on adjacent normal and breast cancer tissues from 96 premenopausal women with known clinical
reproductive histories, and on rat mammary glands with distinct ovarian hormone exposures. COX-2
expression in the normal breast epithelium varied more than 40-fold between women and was asso-
ciated with COX-2 expression levels in ductal carcinoma in situ and invasive cancer. Normal breast COX-2
expression was independent of known breast cancer prognostic indicators, including tumor stage and
clinical subtype, indicating that factors regulating physiological COX-2 expression may be the primary
drivers of COX-2 expression in breast cancer. Ovarian hormones, particularly at pregnancy levels, were
identified as modulators of COX-2 in normal mammary epithelium. However, serial breast biopsy analysis
in nonpregnant premenopausal women suggested relatively stable baseline levels of COX-2 expression,
which persisted independent of menstrual cycling. These data provide impetus to investigate how
baseline COX-2 expression is regulated in premenopausal breast tissue because COX-2 levels in normal
breast epithelium may prove to be an indicator of breast cancer risk in young women, and predict the
chemopreventive and therapeutic efficacy of COX-2 inhibitors in this population. (Am J Pathol 2014,
184: 1219e1229; http://dx.doi.org/10.1016/j.ajpath.2013.12.026)
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In 2010, approximately 13% of all breast cancers in the
United States were diagnosed in women age 45 and
younger, accounting for nearly 18,600 cases of invasive
breast cancer and 6500 cases of ductal carcinoma in situ
(DCIS).1 Furthermore, the proportion of advanced breast
cancers diagnosed in young American women is increasing
at a rate of 2% per year, making young women’s breast
cancer an emerging concern.2 Compared with breast cancer
in older women, young breast cancer patients have increased
recurrence and lower survival rates.3e8 Although a delayed
diagnosis can contribute to poorer survival in some young
patients,6,9 the primary factor driving poor prognosis is
tumor biology. Young women’s breast cancer has increased
hormone-receptor negativity, tumor cell proliferation, and
lymphovascular invasion compared with postmenopausal
stigative Pathology.

.

cases.4,6,10 Moreover, young age at the time of breast cancer
diagnosis is an independent poor prognostic factor.4,6,7,11,12

These data provide compelling arguments to develop novel
strategies to reduce breast cancer incidence and poor out-
comes in young women.

One potential target for young women’s breast cancer is
cyclooxygenase-2 (COX-2),13 a key enzyme in the synthesis
of homeostatic and proinflammatory prostanoids.14 In rodent
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breast cancer models, COX-2 overexpression induces mam-
mary tumorigenesis and is associated with multiple tumor-
promotional effects including increased angiogenesis,
enhanced tumor cell migration and invasion, and reduced
antitumor immunity.15e20 Conversely, COX-2 inhibition or
loss in rodent models reduces mammary tumorigenesis and
metastasis.17,21e23 Clinical data are consistent with similar
roles for COX-2 in human breast cancer because COX-2
overexpression in breast cancer is associated with decreased
disease-free and overall survival.24,25 In addition, regular use
of nonsteroidal anti-inflammatory drugs (NSAIDs), which
inhibit the COX family of enzymes, can reduce overall breast
cancer risk.26,27 To date, the function of COX-2 in young
women’s breast cancer has not been addressed. In a single
study, high COX-2 expression in combination with increased
collagen I is reported as a poor prognostic indicator in young-
onset breast cancer patients (age, <45 years).16 One mecha-
nism by which COX-2 may contribute to young-onset breast
cancers is through its role in normal breast tissue remodeling.
Importantly, windows of active breast tissue remodeling
specific to young women, such as those associated with pu-
berty, menstrual cycling, pregnancy, and postpartum breast
involution, correlate with an increased risk for incidence and
progression of breast cancer.28,29 Support for this has been
shown in rodent models in which postpartum mammary
gland involution promotes tissue remodeling, tumor pro-
gression, and metastasis, all of which are mitigated by antie
COX-2 treatment.16,30 Furthermore, COX-2 up-regulation
has been observed in rat mammary glands after treatment
with the ovarian hormones estrogen and progesterone,31

which is consistent with a role for COX-2 in physiological
breast tissue remodeling associated with pregnancy and the
menstrual cycle.

We hypothesized that if COX-2 is involved in breast
tissue remodeling, then COX-2 inhibition may represent a
particularly efficacious chemoprevention strategy for young
women. One important step in addressing this hypothesis is
to evaluate COX-2 expression in young women’s breast
tissue. We used human and rodent mammary tissues to
investigate the effect of pregnancy and ovarian hormones on
COX-2 expression in normal tissue as well as to explore the
link between COX-2 expression in histologically normal
adjacent breast tissue, DCIS, and invasive ductal carcinoma
(IDC) in young-onset cases. We found that COX-2 ex-
pression primarily was epithelial and varied greatly be-
tween individual women, with evidence of modulation by
ovarian hormones. In addition, analysis of COX-2 expres-
sion in paired normal adjacent breast epithelium, DCIS, and
IDC within breast tissue from the same woman showed that
COX-2 expression in the normal epithelium was associated
with COX-2 expression in DCIS and IDC. Altogether,
these data suggest that factors regulating COX-2 expression
in normal breast epithelium influence COX-2 levels in
breast cancer, and indicate that further research is warranted
into whether women with high COX-2 expression may
benefit preferentially from COX-2 inhibition strategies.
1220
Materials and Methods

Human Tissue Acquisition

Breast specimens from 96 premenopausal women ages 20 to
45 years who underwent a clinically indicated biopsy
(nZ 10) or surgery (nZ 86) were obtained under University
of Colorado Institutional Review Boardeapproved pro-
tocols. Eighty-six specimens were obtained through a Health
Insurance Portability and Accountability Acteexempt,
consent-exempt retrospective cohort study with Institutional
Review Board approval (University of Colorado Institutional
Review Board 05-0958), and 10 specimens were obtained
through a subsequent prospective full-consent cohort study
(University of Colorado Institutional Review Board 09-0583
and 08-0104). Histologically normal tissue, DCIS, and IDC
were identified by pathologic review. In 11 cases, COX-2
expression in the normal epithelium adjacent to cancer was
compared with expression in a separate quadrant of the breast
to determine whether COX-2 expression in the histologically
normal epithelium was influenced by location. For reproduc-
tive stage and epithelial-stromal analyses, 28 cases with clin-
ical reproductive histories were grouped by reproductive
categories of nulliparous (n Z 7), pregnant (n Z 5), post-
partum involuting (within 2 months of parturition or lactation,
n Z 7), and fully regressed parous (7 to 22 years after partu-
rition, nZ 9). Thirty-seven cases were used for comparison of
paired normal adjacent breast epithelium, DCIS, and IDC
within breast tissue from the samewoman. For correlations, 46
cases were used for normal and DCIS, and 57 for normal and
IDC. To determine COX-2 expression over time, an inde-
pendent cohort of six premenopausal patients with serial bi-
opsies 2 to 3 weeks apart were analyzed.
Animal Husbandry, Reproductive Staging, and
Hormone Stimulation

Animal procedures were approved with ethical consider-
ation by the University of Colorado Anschutz Medical
Campus Institutional Animal Care and Use Committee.
Sprague-Dawley rats (Harlan Laboratories, Indianapolis,
IN) were housed in static caging with 12-hour light-dark
cycles and access to food and water ad libitum. To obtain
distinct reproductive states, female rats approximately 70
days of age were bred, and mammary tissue was harvested
from age-matched virgin, pregnant (days 18 to 20), lactating
(days 10 to 11), involuting day 2, 4, 6, 8, and 10 (2 to 10
days after weaning), and fully regressed rats (4 weeks after
weaning) as described.32 For estrous cycle studies, serial
vaginal smears were performed and mammary glands were
harvested at proestrus, estrus, and diestrus stages 1 and 2 as
described.33 Vaginal smear data were confirmed by cervical
histology.33 For estradiol treatment, virgin female rats
approximately 65 days of age were injected subcutaneously
with 5 mg 17-b-estradiol (Sigma-Aldrich, St. Louis, MO) in
250 mL sesame oil or sesame oil alone daily for 3 days, and
ajp.amjpathol.org - The American Journal of Pathology
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COX-2 in Young Women’s Breast Tissue
sacrificed 3 days after treatment. For estradiol plus proges-
terone treatment, female rats approximately 56 days of age
were injected subcutaneously with 5 mg 17-b-estradiol plus
1.5 mg progesterone (Sigma-Aldrich) in 50 mL sesame oil or
sesame oil alone daily for 7 days, and sacrificed 24 to 48
hours after treatment.

IHC, Image Acquisition, and Quantification

Four-micrometerethick, formalin-fixed, paraffin-embedded
sections were deparaffinized, rehydrated, and sequentially
subjected to Dako TRS Antigen Retrieval Solution (125�C
under pressure for 5 minutes; Dako, Carpinteria, CA), Dual
Endogenous Enzyme Block (10 minutes; Dako), and Protein
Block (10 minutes; Dako). Tissue sections were incubated
in primary antibody (1 hour at room temperature; human:
Cayman Chemical 160112; rat: Cayman Chemical 160106;
Ann Arbor, MI), followed by Envision Plus Rabbit (30
minutes at room temperature; Dako). Immunoreactivity was
visualized using 3,30-diaminobenzidine (Dako). Primary
antibody specificity was confirmed in humans by incubating
1:1 with COX-2 blocking peptide before staining (Cayman
Chemical) (Supplemental Figure S1A), and in rodents by
staining mammary tissue from a COX-2 knockout mouse,
kindly provided by Christopher Rivard, University of Col-
orado AMC (Supplemental Figure S1B).

COX-2estained slides were acquired using a ScanScope
T3 scanner (AperioTechnologies, Leica Biosystems) at 0.46
m per pixel. Aperio analysis software (Leica Biosystems,
Wetzlar, Germany) and a color deconvolution algorithm
(thresholds: clear Z 240, weak positive Z 225, medium
positive Z 198, strong positive Z 150) were used to
quantify staining intensity (Supplemental Figure S2). For all
COX-2 analyses, the analyst was blinded to study design.
For COX-2 quantification of histologically normal adjacent
breast tissue, lobules of representative COX-2 staining and
size were quantified. Representative lobules were chosen
based on pathologic review by a clinical pathologist blinded
to the study design. When possible, 10 representative lob-
ules per case were analyzed; however, in cases with limited
epithelium as a result of the biopsy method used (ie, sur-
gical versus needle), or high stroma or tumor content, at
least five lobules per case were analyzed, for a total of 693
lobules across all cases. To quantify epithelial and stromal
COX-2, the stroma within each lobule (intralobular stroma)
and the stroma between lobules (interlobular stroma) were
analyzed separately. To determine epithelial-only stain, the
intralobular stroma signal was subtracted from the whole
lobule signal. For alveolar:ductal COX-2 analysis, five to
seven ducts and five alveoli per duct were analyzed per case.
For quantification of COX-2 expression in rat mammary
glands, 10 representative fields per animal were analyzed
(nZ 4 animals/reproductive stage). To control for changes in
adipose tissue, lumen size, and cellular content in the rat
mammary gland across the reproductive stages, COX-2 stain
was normalized to the total number of nuclei.
The American Journal of Pathology - ajp.amjpathol.org
Immunoblotting

Pooled rat mammary tissue lysates (n Z 6 animals/repro-
ductive group) were prepared as described.34 Forty micro-
grams of total protein was separated by SDS-PAGE and
immunoblotting was performed using polyclonal rabbit
antieCOX-2 (160106; Cayman Chemical) and monoclonal
anti-actin (Chemicon, Billerica, MA), followed by anti-
rabbit or anti-mouse horseradish peroxidase-conjugated
secondary antibody (Bio-Rad Laboratories, Hercules, CA,
and Santa Cruz Biotechnologies, Santa Cruz, CA, respec-
tively) with detection using ECL Western Blotting Substrate
(Thermo Fisher Scientific, Waltham, MA). COX-2 antibody
specificity was confirmed using mammary tissue from
COX-2 knockout mice described earlier (Supplemental
Figure S1C). Densitometry was performed using ImageJ
software version 1.42q (NIH, Bethesda, MD).

Statistical Analysis

For analysis of COX-2 expression across reproductive
stages and after estrogen or estrogen plus progesterone
treatment, unpaired one-tailed t-tests were used to test for
increased COX-2 expression compared with nulliparous/
virgin or vehicle. Two-tailed t-tests were used for compar-
ison of low, medium, and high COX-2 levels in normal
adjacent, DCIS, and IDC groups, as well as for analyses of
COX-2 expression in the normal epithelium in relation to
DCIS grade, tumor grade, tumor stage, estrogen receptor,
progesterone receptor, and human epidermal growth factor
receptor 2 (HER2) status. The Welch correction was applied
if variance between groups was unequal. For linear regres-
sion analyses, Gaussian distributions were assumed and
Pearson correlation coefficients were calculated. Statistical
analyses were performed using GraphPad Prism software
(version 6; San Diego, CA).

Results

Wide Range in COX-2 Expression across Premenopausal
Human Breast Tissue

To investigate COX-2 expression in the premenopausal
human breast, quantitative COX-2 immunohistochemical
analyses were performed on breast tissue obtained from
women 20 to 45 years of age. First, the effect of tumor
proximity on COX-2 expression in normal adjacent epithe-
lium was assessed because field effects in adjacent normal
epithelium are well documented (reviewed by Heaphy
et al35). In a subset analysis (nZ 12), the proximity to tumor
did not significantly affect adjacent normal COX-2 expres-
sion, indicating that COX-2 expression in normal breast tis-
sue can be assessed in breast cancer cases (Supplemental
Figure S3). In all cases containing normal epithelium
(n Z 66), the normal breast tissue stained positively for
COX-2, although the percentage of positivity of the tissue
1221
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varied more than 40-fold (1.8% to 71%) (Figure 1A).
Furthermore, the mammary epithelium was the dominant
source of COX-2, showing a range of low, moderate, and
high expression, and accounting for approximately 94% of
the total signal (Figure 1, B and C). Based on the wide
variation in epithelial COX-2 expression observed, we
explored whether the reproductive state contributes to
COX-2 expression in normal breast tissue. Cases with
Figure 1 Normal breast tissue COX-2 expression is primarily epithelial and is r
varies greatly by case. B: COX-2 IHC (brown signal) images are representative of lo
contribution to the total lobular COX-2 signal. Representative COX-2 IHC (D) an
nulliparous (nullip), pregnant (preg), postpartum involution (inv), and parous ca
shows up-regulation of COX-2 specific to hormone-responsive alveolar epithelium.
stages shows preferential up-regulation of COX-2 in alveoli with pregnancy an
interlobular stroma (J) positive for COX-2. *P < 0.05, one-tail unpaired t-test; *
t-test. Scale bar Z 40 mm.

1222
clinical reproductive histories (Table 1) were separated into
nulliparous, pregnant, postpartum involution, and fully
regressed parous groups. A marked approximately sevenfold
increase in total lobule COX-2 expression was observed in
pregnant cases compared with nulliparous controls (Figure 1,
D and E). During pregnancy, COX-2 up-regulation occurred
predominantly in the alveoli (Figure 1, F and G). COX-2
expression in the normal breast also increased in
egulated by pregnancy and postpartum involution. A: COX-2 IHC expression
w-, moderate-, and high-expression cases. C: Relative stromal and epithelial
d percentage of lobular area positive for COX-2 (E) in breast tissue from
ses. F: COX-2 staining in human breast at approximately 8 weeks gestation
G: Ratio of alveolar to ductal COX-2 stain in the breast across reproductive
d involution. Percentage of epithelium (H), intralobular stroma (I), and
*P < 0.01, one-tailed unpaired t-test; ***P < 0.0001, one-tailed paired
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Table 1 Clinical Characteristics of Cases Analyzed by Reproductive Stage

Patient Parameters Nulliparous Pregnant Postpartum involution* Parousy

Cases (n) 7 5 7 9
Average age (years) 35.6 � 6.5 34.0 � 7.7 28.9 � 7.0 40.9 � 4.1
Average gravidity 0 1.50 � 0.7 2.3 � 0.5 3.3 � 1.4
Average parity 0 0.50 � 0.7 1.8 � 0.5 2.3 � 1.1
Race
White 7 1 1 6
Hispanic 0 0 0 2
African American 0 0 0 1
Asian 0 0 1 0
Not reported 0 4 5 0

Data correspond to Figure 1.
*Within 2 months of parturition or lactation.
yMore than 7 years after parturition.

COX-2 in Young Women’s Breast Tissue
postpartum involution cases, but to a lesser extent than during
pregnancy (Figure 1, D and E). In fully regressed breast tissue
from parous women, expression levels returned to nullipa-
rous baseline levels (Figure 1, D and E). Furthermore, COX-
2 expression was independent of patient age or body mass
index (Supplemental Figure S4).

Based on the known role for COX-2 stromal cells during
wound healing and inflammation (reviewed by Smith
et al36), we investigated COX-2 expression specifically
within the intralobular (within a lobule) and interlobular
(between lobules) stromal compartments. These analyses
confirmed that COX-2 induction during pregnancy is pre-
dominantly epithelial, and also identified a small, but sig-
nificant, increase in the intralobular stroma (Figure 1, H and I,
and Supplemental Figure S5); similar trends were observed
Figure 2 COX-2 is up-regulated in the rat mammary gland during pregnancy
signal) in rat mammary glands from virgin (vir), pregnancy (preg) days 18 to 20, la
after weaning. Inset shows epithelial staining at a higher magnification. Scale bar
rat mammary tissue across the reproductive cycle. C: Western blot for COX-2 and a
tailed unpaired t-test. AU, arbitrary units.

The American Journal of Pathology - ajp.amjpathol.org
during involution (Figure 1, H and I, and Supplemental
Figure S5). Quantification of COX-2 in the interlobular
stroma showed no significant changes across stages
(Figure 1J and Supplemental Figure S5). These data are
consistent with coordinated regulation of COX-2 within the
epithelium and intralobular stroma during pregnancy, but not
within the interlobular stroma.

Evidence for Ovarian Hormone Regulation of COX-2

Having demonstrated that COX-2 is upregulated during
pregnancy in women, the Sprague-Dawley rat model was
used to investigate mammary tissue COX-2 expression
across defined pregnancy, lactation, and postpartum invo-
lution time points. COX-2 expression in the mammary
and postpartum involution. A: Representative COX-2 IHC staining (brown
ctation (lac) day 10, involution days 2 to 10 (inv2-10), and parous-4 weeks
Z 10 mm. B: Percentage of COX-2þ area normalized to number of nuclei in
ctin using pooled rat mammary tissue lysates. *P < 0.05 versus virgin, one-

1223

http://ajp.amjpathol.org


Fornetti et al
epithelium was low in virgin (nulliparous) rats, increased
significantly during pregnancy, and was lost during lactation
(Figure 2, A and B). After lactation, epithelial COX-2
gradually increased across mid- to late-involution (days 6,
8, and 10), and returned to baseline levels in the fully
regressed gland (Figure 2, A and B). These data were
verified by immunoblot for all stages except lactation
(Figure 2C). By immunohistochemistry (IHC), COX-2 stain
was low in the lactating gland and was restricted to apical,
vesicle-like structures budding off the lactating mammary
epithelium (Figure 2A); however, by immunoblot, COX-2
levels were highest during lactation (Figure 2C). Based on
these disparate observations, we speculate that COX-2 is
localized in the membrane of secreted vesicles during
lactation and secreted with milk. Thus, the discrepancy
between the IHC and immunoblot data may be explained by
the fact that most milk is lost from the gland during IHC
preparation, but remains in the tissue lysate used for
immunoblot. Of note, a putative role for COX-2 in milk or
milk production has not been reported, warranting addi-
tional investigation into this observation.

To explore the role of ovarian hormones in COX-2
regulation, COX-2 expression was evaluated by IHC across
the rat estrous cycle. COX-2 expression in the mammary
epithelium increased modestly during estrus and diestrus
stage 1 of the estrous cycle (Figure 3A), consistent with
estrogen and progesterone regulation. It is potentially rele-
vant that the range of COX-2 expression levels in the
nulliparous rat across estrous stages was similar to that
observed in our premenopausal nulliparous and fully
regressed parous human cohorts (Figure 1E). In rats, direct
evidence for ovarian hormone regulation was shown by
COX-2 up-regulation in the mammary epithelium after
estradiol and estradiol plus progesterone treatment designed
1224
to mimic the biological effects of pregnancy (Figure 3B).
The magnitude of COX-2 up-regulation after treatment was
comparable with that observed in breast tissue of women
during pregnancy (Figure 1, D and E).

Coordinated COX-2 Expression in Normal Epithelium,
DCIS, and Breast Cancer

Given the wide range of COX-2 expression in the normal
premenopausal human breast (Figure 1, A and B), and the
reported poor prognosis associated with COX-2 up-regula-
tion in breast cancer,24,25 we investigated the relationships
between COX-2 expression in normal adjacent breast tissue,
DCIS, and IDC. A quantitative assessment of COX-2
expression was performed using matched normal adjacent
and DCIS lesions within a single tissue section from the
same case (nZ 46), as well as matched normal adjacent and
IDC, also from a single tissue section (n Z 57), obtained
from the cohort described in Table 2. COX-2 expression in
the normal adjacent epithelium correlated strongly with
DCIS COX-2 expression (Figure 4A), and correlated
moderately with COX-2 expression in IDC (Figure 4B).
Thirty-seven cases containing normal, DCIS, and IDC on
the same tissue section then were stratified into categories
of low, moderate, and high normal epithelium COX-2
expression. We found that cases with low adjacent normal
COX-2 expression also had low expressing DCIS and IDC
(Figure 4C). Similarly, cases with moderate and high adja-
cent normal COX-2 expression had moderate and high
DCIS and IDC expression, respectively (Figure 4C). When
comparing normal adjacent, DCIS, and IDC within the same
case, COX-2 expression was highest in the adjacent normal
tissue, decreased in the matched DCIS, and further
decreased in the matched IDC lesion (Figure 4C).
Figure 3 Evidence for ovarian hormone regulation of
COX-2 in rat mammary epithelium. A: Representative IHC
staining (brown signal) and quantification (right) of COX-2
expression in rat mammary tissue across the estrous cycle.
P Z 0.38, one-way analysis of variance. B: COX-2 IHC
staining and quantification in rat mammary tissue after
estradiol (E) or estradiol þ progesterone (E þ P) treatment.
Veh, vehicle. *P < 0.05; **P < 0.01, one-tailed unpaired
t-test.
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Table 2 Clinical Characteristics of Cases Used for Normal
Adjacent, DCIS, IDC, and Serial Biopsy Analyses

Patient Parameters

Normal
adjacent, DCIS,
and IDC analysis

Serial
biopsy
analysis

Cases (n) 83 6
Average age (years) 37.5 � 5.6 35.8 � 10.5
Average body mass index 25.4 � 6.1 24.8 � 1.5
Average gravidity 2.2 � 1.6 1.8 � 1.3
Average parity 1.7 � 1.3 1.8 � 1.3
Race
White 59 3
Hispanic 13 0
African American 3 0
Not reported/other 8 3

Histologic subtype
Ductal 74 5
Lobular 5 0
Ductal þ lobular 2 1
Other 2 0

Stage
0 4 1
I 14 1
II 53 2
III 11 2
Unknown 1 0

Tumor subtype
Luminal A 37 2
Luminal B 17 2
Triple negative 16 0
HER2 7 1
Unknown (including stage 0) 6 1

Tumor grade
1 4 0
2 31 2
3 39 3
Unknown 5 0

DCIS grade
1 0 0
2 3 0
3 1 1

Tumor size
<2 cm 17 3

COX-2 in Young Women’s Breast Tissue
Importantly, COX-2 expression in the normal adjacent
epithelium was not associated with DCIS or IDC grade,
stage, or estrogen receptor, progesterone receptor, or HER2
status (Figure 4, DeG), indicating that, in our cohort, COX-
2 expression in the normal epithelium was not driven by the
cancer state. This observation was supported further by
evidence that COX-2 expression in the normal epithelium
also did not differ significantly with proximity to the tumor
(Supplemental Figure S3). These data suggest that women
can be segregated into groups of low, moderate, and high
COX-2 expression based on the expression levels in their
normal breast epithelium, and that factors underlying
COX-2 expression in the normal epithelium may influence
COX-2 expression in DCIS and IDC.

For COX-2 expression in the normal breast epithelium to
be considered a potential risk factor for breast cancer in
young women, the distinct baseline levels of low, moderate,
and high COX-2 expression in the normal epithelium would
need to remain relatively stable over time. However, an
important potential caveat raised by our data showing
ovarian hormone modulation is whether a single breast bi-
opsy can predict overall COX-2 expression in young pre-
menopausal women. To begin to address this question,
COX-2 expression was analyzed in a distinct cohort of
premenopausal cases (n Z 6) who underwent serial breast
biopsies 2 to 3 weeks apart, allowing for analysis of COX-2
expression in a single case at two different time points
during physiological menstrual cycling. The patient char-
acteristics of this smaller cohort were reflective of the larger
cohort used for the normal adjacent, DCIS, and IDC anal-
ysis in terms of age, body mass index, parity, histologic and
tumor subtype, and stage (Table 2). In five of six cases, the
relative COX-2 expression (ie, low, moderate, and high
categories) remained within the same category between bi-
opsies, although one case moved from the high to the
moderate category (Figure 4H). Although this was a small
cohort, these data suggest that COX-2 expression data ob-
tained from a single breast biopsy may prove to be a valid
indicator of individual baseline COX-2 expression levels in
young women.
�2 cm 51 2
Unknown (including stage 0) 15 1

Lymphovascular invasion
Present 28 3
Absent 31 1
Unknown (including stage 0) 24 1

Lymph node involvement
Present 40 4
Absent 37 1
Unknown (including stage 0) 6 1
Discussion

A young women’s breast tissue cohort and rat models were
used to investigate COX-2 expression in histologically
normal mammary epithelium and the relationship between
normal adjacent and breast cancer COX-2 expression. This
was the first study to address COX-2 expression exclusively
in breast tissue of premenopausal women, ages 45 years and
younger, and to use computer-based analysis software to
quantify COX-2 expression separately in the mammary
epithelium and stroma. We found the epithelium to be the
dominant source of COX-2 in normal adjacent breast tissue,
with an approximately 40-fold range in expression across
cases. Cumulatively, our studies implicate differential
The American Journal of Pathology - ajp.amjpathol.org
baseline levels of COX-2 expression between women,
which can be influenced by ovarian hormones. Moreover,
COX-2 expression in the normal breast epithelium paral-
leled COX-2 expression in DCIS and IDC. These data are
consistent with results obtained from predominantly
1225
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Figure 4 COX-2 expression in normal breast epithelium is associated with COX-2 expression in matched DCIS and IDC. A: Correlation between
COX-2 expression in matched adjacent normal and DCIS. B: Correlation between COX-2 expression in matched adjacent normal and IDC. C:
Stratification of cases based on low, moderate, and high COX-2 expression in the normal adjacent epithelium. COX-2 expression in normal
epithelium is not associated with DCIS grade (D), tumor grade (E), tumor stage (F), or biological subtype (G). H: COX-2 expression in serial
biopsies separated in time by 2 to 3 weeks. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, two-tailed unpaired t-test. Lum A, luminal A;
Lum B, luminal B; TN, triple negative.

Fornetti et al
postmenopausal cohorts in which COX-2 expression also
was observed in the breast epithelium and correlated with
DCIS and invasive cancer expression.24,37e39 It previously
was proposed that field effects emanating from premalignant
tissue or overt cancer are responsible for high COX-2
expression in normal adjacent epithelium38,40; however,
our data showed that COX-2 expression in the normal
1226
epithelium is independent of known clinical prognostic
features and support an alternative hypothesis in which
physiological regulators of COX-2 expression in the normal
breast epithelium influence DCIS and IDC COX-2 expres-
sion levels.
The observation that baseline COX-2 levels in the breast

vary dramatically between young women raises two
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Model of the relationships between COX-2 expression in the
normal epithelium, DCIS, and invasive breast cancer in premenopausal
women. Baseline COX-2 expression in the normal breast epithelium varies
across individual premenopausal women and can be modified by estrogen
(E) and progesterone (P) exposure. Young women with increased COX-2
expression in the normal epithelium are predicted to have an increased
risk for breast cancers with a poor prognosis, and may be candidates for
chemoprevention strategies targeting COX-2.

COX-2 in Young Women’s Breast Tissue
provocative but unanswered questions: whether high base-
line COX-2 expression can predict risk of young-onset
breast cancer, and whether women with high baseline COX-
2 expression would preferentially benefit from COX-2 in-
hibition strategies (modeled in Figure 5). Consistent with a
promotional role for COX-2 in breast cancer risk, increased
COX-2 expression in the breast epithelium is associated
with premalignancy and induces mammary tumor formation
in mice.20,41 Furthermore, in women, high COX-2 expres-
sion in atypia is associated with an increased breast cancer
risk.41 Importantly, a requisite for normal breast COX-2
expression to be predictive for breast cancer risk is that
COX-2 expression remains relatively constant across time.
Our data showing ovarian hormone modulation of COX-2
in normal breast epithelium would be expected to reduce
the predictive value of COX-2 expression in young women.
To address this concern, we performed a serial biopsy
analysis in a small cohort of individual premenopausal
women that showed relative stability in COX-2 expression
levels over time. One interpretation of these data is that
menstrual cycleedriven fluctuations in COX-2 expression
occur within the context of a relatively stable baseline level
of COX-2 expression. A larger sample size is necessary to
address this key point, as well as to address potential
mechanisms determining baseline COX-2 expression levels.
Clinical relevance lies in the fact that 70% to 80% of the
approximately 1 million clinical breast biopsies per year in
the United States alone are given a benign diagnosis.42,43

For the vast majority of these women, molecular strategies
to identify high-risk populations are absent, leaving pop-
ulations of high-risk women unidentified. Data from our
cohort suggest that as many as 30% of young women have
high baseline COX-2 expression. The validation of our re-
sults showing stable categories of low, medium, and high
baseline COX-2 expression would argue for future studies
to investigate the relationship between normal epithelial
COX-2 expression and breast cancer risk.

The association between COX-2 staining in the normal
adjacent epithelium and breast cancer implies that if
young women with high baseline COX-2 levels develop
breast cancer, their tumors also will express high levels of
COX-2 (Figure 5). This is of prognostic significance
because COX-2 expression is an independent predictor of
decreased disease-free and overall survival.24,25 Thus,
understanding mammary COX-2 regulation and expres-
sion in young women may aid in identifying novel
treatments for patients whose tumors express increased
COX-2. This concept also is supported by other in-
vestigators who have proposed that understanding COX-2
expression in the normal breast epithelium is necessary to
gain insight into COX-2 expression in cancer.24,37,38 Our
data showing regulation of COX-2 by estrogen and pro-
gesterone raise intriguing questions such as whether
increased baseline COX-2 expression in young women’s
breast tissue is associated with early menarche, contracep-
tive use, or pregnancy history. High COX-2 levels have
The American Journal of Pathology - ajp.amjpathol.org
been implicated in breast cancers diagnosed after preg-
nancy,16 providing additional support for understanding
how reproductive history influences COX-2 expression in
young women’s breast cancer. Somewhat surprisingly, a
relationship between body mass index and COX-2
expression in the normal adjacent breast epithelium was
not observed in our cohort, although additional work is
warranted to address this relationship further.

Data from colorectal cancer indicate that identifying pa-
tients whose tumors have high COX-2 expression may be a
key step in achieving a survival benefit with NSAID treat-
ment44; however, data from the Nurses’ Health Study
indicate that the survival benefit of NSAID use in breast
cancer patients does not depend on tumor COX-2 expres-
sion levels.45 However, it remains unexplored whether
young premenopausal breast cancer patients present a
unique population in whom baseline COX-2 levels do
impact outcomes. Given the high level of physiological
tissue remodeling that occurs in the breasts of young
women28 and the links between COX-2, tissue remodeling,
and breast cancer, further investigations into the potential
benefits of NSAID treatment in young women’s breast
cancer are warranted.

In summary, we show high variability in COX-2
expression in normal breast epithelium between young
women and provide evidence for hormone regulation.
Furthermore, we provide evidence that the mediators of
physiological COX-2 expression also influence expression
in DCIS and breast cancer. These data provide impetus to
further determine how COX-2 expression levels are
regulated in the normal human breast because baseline
COX-2 expression levels may inform breast cancer risk
assessment, chemopreventive efficacy of NSAIDs, and
utility of COX-2etargeted therapies in young premeno-
pausal women.
1227
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