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SUMMARY

Here, we describe a multiplexed immunohistochem-
ical platform with computational image processing
workflows, including image cytometry, enabling
simultaneous evaluation of 12 biomarkers in one
formalin-fixed paraffin-embedded tissue section.
To validate this platform, we used tissue microar-
rays containing 38 archival head and neck squa-
mous cell carcinomas and revealed differential
immune profiles based on lymphoid and myeloid
cell densities, correlating with human papilloma
virus status and prognosis. Based on these results,
we investigated 24 pancreatic ductal adenocarci-
nomas from patients who received neoadjuvant
GVAX vaccination and revealed that response to
therapy correlated with degree of mono-myelocytic
cell density and percentages of CD8+ T cells ex-
pressing T cell exhaustion markers. These data
highlight the utility of in situ immune monitoring
for patient stratification and provide digital image
processing pipelines to the community for exam-
ining immune complexity in precious tissue sec-
tions, where phenotype and tissue architecture are

preserved to improve biomarker discovery and
assessment.

INTRODUCTION

Therapies targeting critical aspects of T cell regulation have
revolutionized cancer therapy for some patients with highly anti-
genic cancer types (Palucka and Coussens, 2016); however,
many patients still fail to respond and/or develop resistance to
immune-based therapy. Moreover, tumors possessing low
mutational burdens and/or those with limited antigenicity pre-
sent unique therapeutic obstacles, because response rates for
these remain low. Given that increased numbers of patients
are now receiving some form of immune therapy, a major goal
is to identify either in situ or circulating biomarkers to aid patient
stratification for precision immune therapy such that efficacy can
be increased and expanded across tumor types, as well as bio-
markers for longitudinal response monitoring, e.g., remission
and resistance.
Profiling immune contexture has emerged as a powerful

metric for tumor subclassification, as well as predicting clinical
outcome (DeNardo et al., 2011; Fridman et al., 2012; Galon
et al., 2006; Ruffell et al., 2014; Zhang et al., 2003). Based
on these insights, we predicted that effective auditing of
tumor leukocyte biomarkers in situ might provide sufficient
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stratification metrics with which to improve the success of im-
mune-based therapies. A major obstacle for deployment of
such a strategy is based on limited quantities of precious tu-
mor-derived biopsy material for in situ prospective monitoring.

Herein we describe an optimized sequential immunohisto-
chemistry (IHC) approach, using either biopsy or surgical
specimens in formalin-fixed paraffin-embedded (FFPE) tissue
sections and panels of antibodies enabling comprehensive
phenotyping of immune complexity, together with computational
image processing workflows that support a multiparameter
cytometric quantification strategy. Altogether, these enable
assessment of multiple lineage-selective and phenotypic bio-
markers in three FFPE tissue sections quantitatively evaluated
with three 12-antibody biomarker panels, which audit lymphoid
and myeloid lineages, and the functional status of T cells.

Using this platform in a head and neck squamous cell carci-
noma (HNSCC) cohort, we revealed that differential immune
complexity, representing either lymphoid- or myeloid-inflamed
tumors, correlated with clinical outcomes and tumor subclassifi-
cation. In addition, by appending geometrical mapping analysis
on top of leukocyte density, immune complexity status was
linked to therapeutic response to vaccination therapy in pancre-
atic ductal adenocarcinoma (PDAC), where myeloid-inflamed
and T cell exhaustion status correlated with shorter overall
survival.

All required pipelines for digital image processing and related
computational manuals are available at https://github.com/
multiplexIHC/cppipe. Because this multiplex IHC platform is
based on conventional digital IHC examination without requiring
additional instrumentation, this method is technically and
economically equivalent to standard IHC, thus enabling feasi-
bility for large-scale studies without significant cost. These
advancements will lead to expanding biomarker-based discov-
ery and deployment in oncoimmunology research and improved
ability to stratify and monitor patients receiving diverse immune-
based therapeutics.

RESULTS

Optimized Sequential IHC and Digital Image Processing
Enable Evaluation of 12 Biomarkers in One FFPE Tissue
Section
To develop an IHCworkflow enabling simultaneous evaluation of
multiple biomarkers in one FFPE section, we built upon sequen-
tial IHC methodology originally reported for a 5-plex protocol
(Glass et al., 2009) and subsequently expanded to enable 12-
color sequential IHC with iterative labeling and stripping steps,
facilitating analysis of more than 12 proteins on one tissue sec-
tion, regardless of detecting antibody species of origin (Figures
1A, 1B, and S1). Briefly, after standard IHC preparation and pri-
mary antibody incubation, antibodies are detected by a F(ab0)
fragment-specific secondary antibody-labeled polymer-based
peroxidase. Following detection, slides are visualized by
alcohol-soluble peroxidase substrate 3-amino-9-ethylcarbazole
(AEC), followed by whole-slide digital scanning. Iterative staining
is achieved by AEC washing slides in ethanol (Glass et al., 2009;
Tramu et al., 1978), followed by antibody stripping in heated cit-
rate buffer (pH 6.0) (Lan et al., 1995). Slides are then washed and

equilibrated in binding buffer and readied for a subsequent round
of primary antibody incubation. Complete stripping of antibodies
and signals throughout all cycles was confirmed (Figure S2A).
IHC sensitivity was equivalent to standard IHC throughout
11-repeated antibody-stripping rounds (Figures S2B and S2C).
After completing multiple rounds of sequential IHC, serially

scanned and digitized images are processed with a computa-
tional image analysis workflow (see Supplemental Experimental
Procedures). Briefly, sets of serial images are aligned based on a
semi-automated coregistration pipeline using CellProfiler soft-
ware as a backbone (Figure 1C) (Carpenter et al., 2006). Coregis-
tered images are subsequently transferred to ImageJ (Schneider
et al., 2012), and AEC and hematoxylin color information is ex-
tracted by color deconvolution algorithms (Ruifrok et al., 2003),
wherein images are converted to grayscale and then visualized
as pseudo-colored images (Figures 1D–1F).

Two 12-Biomarker Panels of Lineage-Selective
Antibodies Identify and Phenotype Lymphoid and
Myeloid Cells Evaluating Expression of 19 Distinct
Biomarkers
To specifically audit complexity and phenotype of resident
and infiltrating leukocytes in tumors in which geographic distri-
bution can be preserved, we established two panels of 12 bio-
markers each, encompassing 19 distinct epitopes to phenotype
lymphoid and myeloid lineage cells (Figures 1A, 1B, 2, and S1;
Table S1). The lymphoid biomarker panel depicts CD8+ T cells;
TH0, TH1, TH2, and TH17 T cells; regulatory T cells (TREG); B cells;
and natural killer (NK) cells, while the myeloid biomarker panel
visualizes CD163+ versus ! tumor-associated macrophages
(TAMs); immature (DC-SIGN+) versus mature (CD83+) dendritic
cells (DCs); CD66b+ granulocytes (Gr), including neutrophils
and eosinophils; and tryptase+ mast cells (Figures 2A, 2B, S1A,
S1B, S3A, and S3B), thus enabling quantitative evaluation of
14 immune cell populations (Figure 2C).

Multiparameter Image Cytometry Enables Quantitative
Assessment of 14 Cell Lineages in Multiplexed IHC
Images
To enable quantitative evaluation of leukocyte features with
regional and proximity analytics, we developed amultiparameter
cytometric quantification approach via evaluation of single-cell-
based chromogenic intensities using single-cell segmentation
algorithms in CellProfiler (see Supplemental Experimental Pro-
cedures). We used hematoxylin-stained images for cell segmen-
tation based on watershed algorithms (Padmanabhan et al.,
2010; Wählby et al., 2004), followed by quantification of chromo-
genic signals in serial AEC-stained images, providing multipara-
metric information, including cell size, compactness, and
location, with chromogenic intensity for each protein biomarker
(Figure 3A). Single-cell-based information, including pixel inten-
sity and shape-size measurements, was visualized and analyzed
with qualitative assessment of signal intensities, analogous to
flow cytometry (fluorescence-activated cell sorting [FACS])
data (Figure 3B). Thresholds for qualitative identification were
determined based on distribution of plots for each marker in
negative control slides (Figure S4A). Gated cells in dot plots
were visualized in the original image, together with distribution
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Figure 1. Schematic Overview of 12-Color Sequential IHC and Image Visualization
(A and B) Digital scans representing bright-field sequential IHC of one formalin-fixed paraffin-embedded (FFPE) section of human head and neck squamous cell

carcinoma (HNSCC) tissue enable assessment of 12 lymphoid (A) and myeloid (B) biomarkers. Primary antibodies were visualized with horseradish peroxidase-

conjugatedpolymer and3-amino-9-ethylcarbazole (AEC) detection, followedbywhole-slide digital scanning. Following destaining in analcohol gradient andheat-

based antibody stripping using citrate (pH 6.0) (see Experimental Procedures and Table S1), samples were restained sequentially with the indicated antibodies.

(C) Following manual selection of a single cell or structure, indicated by magenta circles, the xy coordinates of scanned images were calculated and used for

adjustment of alignment in CellProfiler (see Experimental Procedures).

(D) AEC color signals were extracted from each digitized single-marker image by color deconvolution, followed by pseudo-coloring. Scale bar, 100 mm.

(E and F) Two serial FFPE sections of HNSCCwere stained with the lymphoid (E) andmyeloid (F) biomarker panels by pseudo-coloring. Biomarkers and colors are

shown on the right. Corresponding single-marker images are shown in Figures S1A and S1B. Scale bars, 500 mm.
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in the tissue context, e.g., stromal versus within a neoplastic cell
nest (Figure 3B). The xy coordinates of selected single cells were
also depicted in the original image, enabling positioning of each
cell in the corresponding image (Figure S4A).

To achieve quantitative data analogous to multiparametric
12-color FACS (Gunderson et al., 2016; Ruffell et al., 2012),
we developed qualitative gating strategies for the panels (Fig-

ures 3C, 3D, and S4A–S4C). For comparative analyses be-
tween image cytometry and FACS, the same pieces of
human surgical specimens were divided into two pieces, eval-
uated by single-cell suspension-based FACS analysis and
FFPE section-based image cytometry, and observed for
positive correlations in percentages of T and B cells measured
by both methodologies (N = 9) (Figures S4D and S4E), (the
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Figure 2. 12-Color Multiplex IHC to Visualize Lymphoid and Myeloid Immune Cell Phenotypes in FFPE Sections
(A and B) FFPE sections of humanHNSCC tissues were analyzed by the two 12-marker panels of lineage-selective antibodies to identify lymphoid (A) andmyeloid

(B) lineages (left panels). Figure S3 shows single-color images for composites shown in (A) and (B). Colocalization of multiple markers enabled discernment of

immune cell phenotypes, including CD3+CD8+ T cells; regulatory T cells (TREG); TH0, TH1, TH2, and TH17 lymphocytes; CD163+ and CD163! macrophages;

CD66b+ granulocytes (Gr); and mast cells (right panels with colored arrows). Biomarkers and colors are shown in the center. Scale bars, 25 mm.

(C) Lineages and corresponding identification markers used in this study are shown.
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Figure 3. Multiparameter Cytometric Image Analysis for Quantification of Multiplex IHC
(A) A hematoxylin-stained image used for automated cell segmentation based on watershed segmentation algorithms by CellProfiler is shown (see Experimental

Procedures). Segmentation results were used as templates for quantification of serially scanned AEC images, and pixel intensities of chromogenic signals and

area-shape measurements were extracted and recorded by single-cell analysis, together with location in original images.

(B) Obtained single-cell-based chromogenic signal intensity, cell size or area, and location were used for density plots similar to flow cytometry by using

the cytometry analysis software FCS Express 5 Image Cytometry (De Novo Software). Three dot plots shown at the top represent image cytometric analysis in

(legend continued on next page)

Cell Reports 19, 203–217, April 4, 2017 207



Flow Repository: FR-FCM-ZY3A), thus validating the image
cytometric approach.

In Situ Leukocyte Analysis Enables Tumor
Subclassification and Risk Production in HNSCC
To verify the capability of the multiplex imaging and quantitation
platform, we evaluated a tissue microarray (TMA) of oropharyn-
geal head and neck squamous cell carcinomas (HNSCCs),
wherein the presence of oncogenic human papilloma virus
(HPV) is associated with immunogenic gene signatures (Keck
et al., 2014; Thurlow et al., 2010), thus serving as a validation
control for the platform. A HNSCC TMA was assembled from
2 mm cores reflecting pathologist-selected representative intra-
tumoral areas, including 21 HPV-positive and 17 HPV-negative
tissues, with 8 non-malignant pharyngeal tissues (Table S2).
IHC evaluation with lymphoid and myeloid panels was per-
formed on two adjacent FFPE sections, wherein antibodies de-
tecting p16 were included to assess HPV positivity (Figures 4A
and 4B). Following quantification of cell densities and ratios of
14 immune cell lineages identified by image cytometry gating
strategies (Figures 3C, 3D, S4B, and S4C), an unsupervised hier-
archical clustering analysis was performed to identify distinct
tumor subgroups based on immune complexity profiles (Fig-
ure 4C). This analysis revealed the presence of lymphoid-
inflamed, hypo-inflamed, and myeloid-inflamed subgroups,
wherein lymphoid and myeloid lineage cells were differentially
present in stroma (Figures 4C and S5A). This observation was
supported by cell density analyses among the three groups (Fig-
ure 4D). Using transversal quantification of multiple immune cell
lineages, we evaluated ratios of CD8+ T cell to CD68 as IHC-
based favorable predictors of clinical outcomes, as reported in
other malignancies (DeNardo et al., 2011; Ruffell and Coussens,
2015), as well as CD163 expression on TAMs, which is associ-
ated with anti-inflammatory TH2 phenotype and tumor initiation
and progression (DeNardo et al., 2011; Mantovani et al., 2002).
Although the hypo-inflamed group unsurprisingly revealed low
scores, reflecting a ‘‘cold’’ inflammatory status, both ratios in
the lymphoid-inflamed subgroup appeared significantly higher
than those in themyeloid-inflamed subgroup (Figure 4E). In com-
parison, the myeloid-inflamed subgroup exhibited the shortest
overall survival among the three subgroups, regardless of HPV
status (Figures 4F and S5B). A leukocyte composition analysis
of total CD45+ revealed high CD163! and CD163+ TAMs and
low TH2 and B cells in HNSCC tissues in comparison to normal
pharynx (Figure 4G). HPV-positive status was associated with
high CD8+ T cells, while HPV-negative status correlated with
high NK cells, DC-SIGN+ DCs, and CD66b+ Gr (Figure 4G),
together indicating the presence of differential immune profiles
between benign and malignant tissues, as well as HPV status.
Distinct immune profiles depending on HPV status were also

confirmed by cell density-based analysis (Figure S5C). Results
comparing HPV status were similarly observed by analysis of
The Cancer Genome Atlas (TCGA) (Figure S5D), supporting vali-
dation of the method for evaluating HNSCC subtypes. To
exclude potential bias from effects of differential tumor-stroma
ratios on immune cell densities, we also evaluated tumor area
percentage as a function of total tissue in each core and
observed no significant differences among subgroups (Figures
S5E and S5F). Although the lymphoid- and hypo-inflamed sub-
groups were clearly segregated between HPV-positive and
HPV-negative status, respectively, the myeloid-inflamed sub-
group with poor prognosis exhibited heterogeneity in HPV status
(Figure 4C), indicating the possibility that further stratification of
patients with HNSCC based on immune profiles beyond HPV
status may be warranted. These data demonstrate that this
quantitative imaging approach depicts distinct immune cell
characteristics corresponding to tumor subtypes according
to immune cell densities and HPV status associating with
prognosis.

Differential Intratumoral Immune Complexity Stratifies
Therapeutic Response to Neoadjuvant GVAX in Patients
with PDAC
Based on the differential success of immune therapies using
vaccines or therapeutic antibodies targeting costimulatory or
coinhibitory molecules, we predicted that effective auditing of
tumor leukocyte biomarkers might provide stratification metrics
with which to improve success of these and other therapies.
Thus, following validation of the multiplex imaging and quantita-
tion approach using archival HNSCC, we sought to evaluate
similar immune metrics to determine whether the approach
would stratify patients based on therapeutic response to an
immune therapy. To accomplish this, we used archival FFPE
specimens from previously reported pancreatic ductal adeno-
carcinoma (PDAC) surgical specimens reflecting patients who
received neoadjuvant GVAX therapy, a granulocyte-macro-
phage colony-stimulating factor (GM-CSF)-secreting pancreatic
tumor vaccine (NCT: NCT00727441) (Lutz et al., 2014), in which
intratumoral lymphoid aggregates develop in some patients as a
post-vaccination response (Table S3). Adjacent FFPE tissues
sections were stained using the lymphoid-selective and
myeloid-selective antibody panels (Figures 5A, S6A, and S6B)
and quantitatively evaluated by image cytometry (Figures S6C
and S6D) in three areas per FFPE tissue (Figures S6E and S6F)
that typically included lymphoid aggregate regions (Figure 5A).
The three 25-megapixel images (approximately 2.5 3 2.5 mm
square) were selected as regions of interest (ROIs) based on
geometrical mapping analyses of CD45+ leukocyte cell densities
(see Experimental Procedures; Figure S9). Following an unsu-
pervised hierarchical clustering analysis similar to Figure 4C,

a p16+ HNSCC tissue. Gated cell populations of CD45+CD3+CD8+ T cells, CD45+CD3+CD8!Foxp3+, CD45+CD3+CD8!Foxp3!, and CD45!p16+ cells are shown

(middle) as an image plot with coloring of orange, magenta, green, and cyan, respectively. A five-color multiplex IHC image corresponding to the image plot is

shown at the bottom, revealing matched identification between image cytometry and visualized images. The boxes depict magnified areas. Scale bars, 100 mm

(low magnification) and 10 mm (high magnification).

(C and D) Image cytometry-based cell population analyses for the lymphoid and myeloid biomarker panels are shown in (C) and (D), respectively. The markers

used for identification of cell lineages are shown in Figure 2C. Gating thresholds for qualitative identification were determined based on data in negative controls

(Figures S4B and S4C). The x and y axes are shown on a logarithmic scale.
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Figure 4. Quantitation of Immune Cell Density-Based Subgrouping Enables Stratification for Prognosis and HPV Status in HNSCC
(A and B) Two FFPE sections from a HNSCC-assembled TMA. including both HPV-negative (n = 17) and HPV-positive (n = 21) oropharyngeal tumor and normal

oropharynx (n = 8), were stained using the lymphoid (A) and myeloid biomarker antibody panels (B). Scale bar, 1.0 mm.

(C) Cell densities (in cells per square millimeter) of 15 immune cell lineages in each core were quantified using image cytometry. Datasets from the two

panels reflecting lymphoid and myeloid biomarkers were normalized based on CD45+ cell number. A heatmap according to color scale (upper left) is shown with

(legend continued on next page)
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we observed differential immune complexity profiles showing
low and high myeloid-inflamed status (Figure 5B). The two clus-
ters showed differential myeloid cell densities, but not lymphoid
cell densities (Figure 5C), compatible with robust induction of
lymphoid aggregate regions post-GVAX. However, despite rela-
tively high lymphoid cell densities in both groups, the existence
of immunosuppressive profiles dominated the high myeloid-in-
flamed group, based on ratios of CD8+ T cells to CD68+ cells
and TH2 polarization of CD8! T cells (Figures 5D and S6G). Com-
parison of these results associated with immunosuppressive
status, and the high myeloid-inflamed group was associated
with short overall survival based on Kaplan-Meier analysis (Fig-
ure 5E). Altogether, these results support the hypothesis that
intratumoral leukocyte analysis, and specifically a myeloid-in-
flamed stroma, may limit efficacy of GVAX therapeutic re-
sponses despite successful induction of lymphoid infiltration.

CD8+ T Cell Status Correlates with Myeloid
Inflammation and Reflects Outcome in Response to
GVAX Therapy
Because tumor-associated myeloid populations contribute to
cancer progression based partly on their immunosuppressive
capabilities regulating T cell dysfunction (Paley et al., 2012; Twy-
man-Saint Victor et al., 2015; Wherry and Kurachi, 2015), e.g.,
proliferation (DeNardo et al., 2011; Ruffell et al., 2014), recruit-
ment (Affara et al., 2014), differentiation, and effector function
(Gunderson et al., 2016; Mantovani et al., 2002; Palucka and
Coussens, 2016), we sought to integrate in situ assessment of
T cell functional status as related to myeloid versus lymphoid
status of tumors. To achieve this, we developed a third antibody
panel (Figures 6A and S7A) for multiplex IHC (Figures 6B and
S7B), in combination with quantitative image cytometry (Fig-
ure 6C), to examine T cell activation or exhaustion status in the
same three tissue areas analyzed for lymphoid and myeloid
complexity (Figure 5A). Images were quantitatively evaluated
by image cytometry; further dissection was then based on
CD45+CD3+CD8+ T cells expressing the coinhibitory receptor
programmed cell death-1 (PD-1), effector T cell development-
associated Eomesodermin (Eomes), and followed by assess-
ment of proliferation (Ki67) and cytotoxic (granzyme B) activity
(Figures 6C–6F, S7C, and S7D). Comparative analysis between
the low and the high myeloid-inflamed profiles observed in
Figure 5B revealed that high myeloid profiles correlated with
PD-1+Eomes+ CD8+ T cells linked to an exhausted phenotype
(Twyman-Saint Victor et al., 2015; Wherry and Kurachi, 2015),
together with expansion of PD-1!Eomes+ late effector T cells
(Figure 6D). The expanded PD-1+Eomes+ CD8+ T cell compo-
nent in the myeloid-inflamed group exhibited relatively low

Ki67 expression, further indicating the presence of exhausted
T cells in relation to myeloid lineage enrichment (Figures 6D
and S7C). Further analysis of the prognostic impact of in situ
T cell functional status revealed that short overall survival was
associated with low proliferation status of CD8+ T cells (Figures
6E and S7D), as well as low activation status assessed by gran-
zyme B (Figure 6F). Altogether, these data indicate that myeloid-
dominated immune environments associate with restricted T cell
functionality, regardless of the degree of lymphoid inflammation,
and adversely correlate with clinical outcome following neoadju-
vant GVAX therapy.

Myeloid PD-L1 Correlates with Activated CD8+ T Cell
Status, Associated with Favorable Prognosis
following GVAX
Considering these data revealed the significance of understand-
ing T cell activation or exhaustion status in the context
of myeloid-mediated inflammation, that expression of pro-
grammed cell death-1 ligand (PD-L1) on myeloid cells may pro-
vide prognostic information for therapeutic response to immune
therapy (Parsa et al., 2007; Patel and Kurzrock, 2015; Topalian
et al., 2012), and that blockade of the PD-1/PD-L1 axis reflects
a therapeutic strategy for HNSCC and PDAC (Paley et al.,
2012; Topalian et al., 2012), we sought to examine PD-L1
expression in relation to T cell functional status to assess its
biomarker potential for patient stratification using both the
HNSCC and the PDAC samples evaluated earlier.
In the HNSCC TMA (Figure 4), 6 of 38 cases exhibited diffuse

PD-L1 expression in HNSCCs (Figure S8A), where PD-L1
expression was observed in a spectrum of leukocyte lineages,
including CD163+ and CD163! TAMs, CD83+ and DC-SIGN+

DCs, NK cells, CD66b+ Gr, mast cells, T cells, and B cells (Fig-
ure S8B), in agreement with previous reports (Lyford-Pike
et al., 2013; Pardoll, 2012; Soares et al., 2015). To quantitatively
verify these observations, the positive percentage of PD-L1
expression in each cell lineage was then quantified by image cy-
tometry and transversely analyzed across cell lineages, together
with subclassification of tumor or normal tissue types. Among
cell lineages including CD45! neoplastic cells, the highest fre-
quency of PD-L1 expression was observed onmyeloid cells (Fig-
ure S8C). High PD-L1 expression on myeloid cells was observed
particularly in HPV-associated tumors (Figure S8C), associated
with lymphoid-inflamed profiles (Figure 4C).
In the GVAX-treated PDAC samples (Figure 5), PD-L1 expres-

sion was identified predominantly in CD45+ cells and particularly
in CD68+ and major histocompatibility complex class II-positive
(MHC class II+) cells and DCs, rather than CD45! populations
(Figures 7A and 7B). To investigate a potential association

a dendrogram of unsupervised hierarchical clustering, depicting lymphoid-, hypo-, and myeloid-inflamed subgroups (L, H, and M at the bottom, respectively).

See also Figure S5C and Table S2.

(D) Immune cell densities of lymphoid andmyeloid cell lineages comparing subgroups in (C). Bars, boxes, andwhiskers represent median, interquartile range, and

range, respectively.

(E) Ratios of cell percentages comparing subgroups are shown. Bars show median with interquartile range.

(F) Kaplan-Meier analysis of overall survival of HNSCC patients stratified by subgroups. Statistical significance was determined via log-rank test.

(G) Immune cell percentages were quantified as a percentage of total CD45+ cells. Vertical lines and gray bars showmedian and interquartile range, respectively.

Statistical differences in (D), (E), and (G) were determined via Kruskal-Wallis tests with false discovery rate (FDR) adjustments, with *p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001.
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Figure 5. Immune Complexity Correlates with Therapeutic Response to Neoadjuvant GVAX Therapy in PDAC
(A) Two adjacent FFPE sections from human PDAC tissues derived from neoadjuvant GVAX-treated individuals (N = 24) (Table S3) were analyzed by multiplex

IHC. Representative 12-color composite images of myeloid and lymphoid biomarker panels are shownwith a corresponding hematoxylin image. Biomarkers and

colors are shown. The boxes represent themagnified area below. Scale bars, 500 mm (low) and 100 mm (highmagnification). Corresponding single-marker images

are shown in Figures S6A and S6B.

(B) Immune cell densities (in cells per square millimeter) of three leukocyte hotspots in intratumoral regions (see Figure S6E) were assessed by multiplex IHC and

image cytometry in analogs to Figure 4C. A heatmap according to color scale (upper left) is shown with a dendrogram of unsupervised hierarchical clustering,

depicting low and high myeloid-inflamed subgroups.

(C) Immune cell densities of lymphoid andmyeloid cell lineages comparing subgroups in (B). Bars, boxes, andwhiskers representmedian, interquartile range, and

range, respectively.

(D) Ratios of cell percentages comparing subgroups are shown. Bars show median with interquartile range.

(E) Kaplan-Meier analysis of neoadjuvant GVAX-treated PDAC cohort (N = 24) stratified by subgroups.

Statistical significance in (E) was determined via log-rank test. Statistical differences in (C) and (D) were determined via Kruskal-Wallis tests, with *p < 0.05 and

**p < 0.01.
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Figure 6. In Situ T Cell Functional Biomarker Assessment Elucidates CD8+ T Cell Status in Non-responders to Neoadjuvant GVAX Treatment
(A) T cell functional biomarker panel is shown as digital scans of bright-field sequential IHC derived from a single FFPE section of human tonsil tissue. Scale bar,

100 mm. Corresponding single-marker images are shown in Figure S7A.

(B) Representative images from PDAC tissue, including lymphoid aggregates. Biomarkers and colors are shown. Boxes represent the magnified area below.

Scale bars, 500 mm (low) and 100 mm (high magnification). See also Figure S7B.

(C) Gating strategy for image cytometry of the T cell functional biomarker.

(D) CD8+ T cells in neoadjuvant GVAX-treated PDAC tissues (N = 24) were assessed by T cell functional biomarker panel in three regions per tissue matched to

analyzed regions in Figure 5C. Left pie charts represent average of CD8+ T cell percentages of total CD45+ cells, comparing low and high myeloid-inflamed

(legend continued on next page)
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between T cell functional status and PD-L1, we examined the
T cell activation marker granzyme B and observed a significant
correlation with PD-L1+ cells (Figures 7C and 7D) independent
of CD8+ T cell frequency (Figure S8D). This observation was sup-
ported by analysis of granzyme B+CD8+ T cell density (Fig-
ure S8E). Furthermore, as was observed in Figure 7A, PD-L1
expression on CD163+ TAMs and DC-SIGN+ immature DCs
correlated with granzyme B positivity of CD8+ T cells (Figures
7B and S8F). As expected, high PD-L1 expression on myeloid
cells was associated with high granzyme B expression in CD8+

T cells, indicating a correlation between PD-L1 upregulation
and activated T cell status. Because activated T cell status
was linked to favorable prognosis (Figure 6F) and high PD-L1
expression was observed on myeloid lineages (Figure 7B), we
then evaluated prognostic significance of myeloid PD-L1 based
on Kaplan-Meier analyses, revealing that high PD-L1 expression
on myeloid lineages represented by MHC class II+ cells and
CD68+ cells indicated significantly longer overall survival (Fig-
ures 7E and 7F). Given that PD-L1 plays a physiological function
for auto-regulatory immune mechanisms, altogether these re-
sults imply that upregulated PD-L1 on myeloid cells could be a
result of phenotypic changes in response to abundant inflamma-
tory cytokines following successful induction of lymphoid-
inflamed profiles. Simultaneously, these observations indicate
that PD-L1 expression on myeloid cells potentially serves as a
biomarker for vaccination therapy, as well as therapeutic targets
via immune checkpoint blockade.

DISCUSSION

In this study, we investigated tumor immune characteristics of
archival HNSCC tumors and in PDAC specimens from patients
who had received neoadjuvant GVAX therapy, using a multiplex
IHC methodology optimized for immune complexity and pheno-
type analyses and accompanied by quantitative studies using
a computational image processing workflow. The imaging
approach and analysis pipeline enable quantitative assessment
of immune infiltrates based on sequential IHC using FFPE spec-
imens to identify clinical correlations for patient stratification.
The three antibody panels described herein enable simulta-

neous evaluation of leukocyte presence, complexity, and func-
tional status in a variety of FFPE tissue contexts. In addition to
the HNSCC and PDAC evaluated herein, this platform has
been used for quantitative assessment of papillary thyroid carci-
nomas and longitudinal core biopsy samples of mesothelioma
and breast and pancreas tumors from patients receiving various
regimens of immune therapy (data not shown), as well as murine
tissues and tumors (Gunderson et al., 2016; Liu et al., 2017), thus
revealing the broad applicability of the approach using minimal
FFPE tissue sections. Considering that FFPE sections are widely
used for routine preparation of diagnostic pathology, this

method accelerates retrospective biomarker studies in archival
tissue sections, as well as prospective and longitudinal assess-
ment using core biopsy specimens to monitor response.
Although current gene expression-based profiling is not

capable of assessing single-cell-based phenotypes or retention
of tissue context information, our approach described herein cir-
cumvents these issues. However, one possible limitation is a
lack of direct correlation between protein expression level and
signal intensity; chromogenic amplification provides non-linear
correlation with protein expression levels. To compensate for
this issue, we adopted thresholding approaches to identify pos-
itive and negative cell populations based on qualitative gating, in
which thresholds were determined by basic signal intensities in
negative controls (Figures S4A–S4C). Based on this qualitative
gating strategy, we observed that image cytometry and flow
cytometry data performed similarly in quantification of lympho-
cytes (Figure S4E); thus, this imaging approach serves as a plat-
form to perform multiparametric assessment of various cell
lineages, enabling tumor localization information. Although this
method enables lineage identification based on multiple line-
age-selective markers (Figure 2), because specific cell types
have a great diversity with regards to lineage-restricted bio-
markers, an ultimate classification of leukocyte subsets based
on markers used herein remains limited and awaits further tech-
nological and bioinformatic innovations.
Analysis of the archival HNSCC cohort described herein sup-

ports the notion that immune complexity of HNSCC reflects clin-
ical outcome and tumor-molecular phenotype, including the
presence of viral antigens. In comparison with previous reports
revealing that malignancies associated with oncogenic viruses
typically induce viral antigen-specific CD8+ T cells infiltration
(Gentles et al., 2015), the multiplex platform affirmed that HPV-
associated HNSCCs contain significantly higher CD8+ T cell
densities and, together with other TH1-associated immune infil-
trates such as Tbet+ TH1 cells and CD163! TAMs (Figure 4G), in-
dicates the presence of anti-tumor immunoreactivity, possibly
against HPV antigens. However, immune cell complexity profiles
of HNSCC revealed lymphoid-inflamed, myeloid-inflamed, and
hypo-inflamed signature-based subtypes not previously identi-
fied by gene expression analyses, in which myeloid-enriched
TH2-biased tumors were associated with decreased overall
survival (Figure 4C–4F). Although there were clear tendencies
of lymphoid-inflamed tumors correlating with HPV-positive tu-
mors, a portion of HPV-positive tumors also correlated with
myeloid-inflamed profiles, and these associated with poor prog-
nosis (Figure 4C), potentially indicating association between
myeloid-driven tumor characteristics and disease aggressive-
ness. Altogether, these observations indicate that tumor charac-
teristics affect infiltration and phenotypes of tumor-infiltrating
immune cells, simultaneously confirming the capability of this in-
tratumoral in situ imaging approach.

profiles defined in Figure 5C. Middle pie charts give average percentages, showing a composition of CD8+ T cells stratified by PD-1 and Eomes expression. Box

whisker plots at the right show Ki67+ percentages evaluated in each CD8+ T cell subpopulation. Bars, boxes, and whiskers represent median, interquartile range,

and range, respectively. Statistical significances between the two groups were determined via Kruskal-Wallis tests with FDR adjustments, with *p < 0.05.

(E and F) Percentages of Ki67 (E) and granzyme B (F) in CD8+ T cells in neoadjuvant GVAX-treated PDAC tissues are shown, comparing overall survivalR 2 years

(n = 12) and overall survival < 2 years (n = 12). Bars show median with interquartile range. Statistical significances were determined via Kruskal-Wallis tests,

with *p < 0.05.
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Figure 7. Myeloid PD-L1 Expression Correlates with Favorable Prognosis following Neoadjuvant GVAX Treatment and Associates with CD8+

T Cell Activation Status
(A) Multiplex IHC images showing PD-L1 expression in neoadjuvant GVAX-treated PDAC tissues. Arrows depict PD-L1+ cells, demonstrating colocalization with

CD45+ CD68+ CSF1R+ macrophages. Scale bars, 100 mm.

(B)PD-L1+percentageswereassessed in thecell lineagesshown,comparing low (n=12)andhigh (n=12)groups ingranzymeBpercentagesofCD8+Tcells.Median

(11.7%)was used for the cutoff line of granzymeB status. Three regions per tissuematched to analyzed regions in Figure 5Cwere evaluated. Vertical lines and gray

bars show median and interquartile range, respectively. Statistical significances were determined via Kruskal-Wallis tests with FDR adjustments, with *p < 0.05.

(C and D) Spearman correlations of granzyme B+ percentages of CD8+ T cells versus PD-L1+ percentages of total cells (C) or CD163+ tumor-associated

macrophages (TAMs) (D) are shown with estimated regression lines (red) in the neoadjuvant GVAX-treated PDAC cohort (N = 24).

(E and F) Kaplan-Meier analyses of neoadjuvant GVAX-treated PDAC stratified by PD-L1+ percentages in CD45+ CD68+ cells (E) and CD45+ MHC class II+ cells

(F). Median (15.7% and 18.7%) was used for the cutoff line of PD-L1 status (for E and F, respectively). Statistical significance was determined via log-rank test.
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Similar to findings in HNSCC, regardless of lymphoid lineage
quantity in PDAC specimens, myeloid-enriched immune profiles
associated with TH2-driven phenotypes and poor prognosis in
response to neoadjuvant GVAX vaccination therapy (Figures
5B–5E), again indicating that myeloid enrichment negatively
affects anti-tumor immune responses as predicted by numerous
murine modeling studies (DeNardo et al., 2011; Mantovani et al.,
2002; Ruffell et al., 2010, 2014; Ruffell and Coussens, 2015).
Quantitative evaluation of functional indicators of T cell differen-
tiation, proliferative, and effector status supported these obser-
vations in revealing that myeloid-inflamed tumors correlated
with shortened survival and were linked to CD8+ T cell exhaus-
tion status, e.g., low Ki67 and granzyme B expression (Figures
6D–6F). Conversely, activated CD8+ T cell status correlated
instead with high PD-L1 expression on myeloid cells, as well
as favorable prognosis (Figures 7E and 7F), indicating the
importance of understanding total immune complexity and
phenotype originating from both lymphoid and myeloid line-
ages. Altogether, data revealed from PDAC and HNSCC
specimens through multiplex IHC and computational image pro-
cessing analysis support the tenant that immune contexture can
be effectively used as a metric for predicting clinical outcomes
and responses to therapy. Results described herein also reveal
characteristics of myeloid lineages whose presence in tumors
restricts induction of anti-tumor immunity and thus highlight
the therapeutic potential for select myeloid antagonists, in
combination with vaccine and/or checkpoint-targeted immune
therapy.

EXPERIMENTAL PROCEDURES

Clinical Samples and TMA Construction
FFPE surgical specimens from 38 patients with previously untreated oropha-

ryngeal squamous cell carcinoma were obtained from the Oregon Health

and Science University (OHSU) Knight Biolibrary and the OHSU Department

of Dermatology research repository and were used to create a TMA. Cohort

characteristics of HNSCC are shown in Table S2. A total of 24 human PDAC

tumor specimens with the presence of intratumoral lymphoid aggregates

were obtained from our previous study, wherein allogeneic GM-CSF-secreting

pancreatic tumor vaccine (GVAX) was administered intradermally either

alone or in combination with immune modulatory doses of cyclophospha-

mide as neoadjuvant treatment for patients with resectable PDAC (NCT:

NCT00727441) (Table S3) (Lutz et al., 2014). Further details can be found in

Supplemental Experimental Procedures.

Sequential IHC and Image Acquisition
Chromogenic sequential IHC was conducted with 5 mm of FFPE tissue sec-

tions. Following deparaffinization, slides were stained by hematoxylin

(S3301, Dako) for 1 min, followed by whole-tissue scanning using Aperio

ImageScope AT (Leica Biosystems). Slides were subjected to endogenous

peroxidase blocking followed by heat-mediated antigen retrieval. Then,

sequential IHC consisting of iterative cycles of staining, scanning, and anti-

body and chromogen stripping was performed according to a modified proto-

col based on previous reports (Glass et al., 2009; Lan et al., 1995; Tramu et al.,

1978). Primary antibodies, horseradish peroxidase (HRP)-conjugated poly-

mer, and chromogenic detection were serially added in the indicated order

and condition shown in Table S1. Two forms of negative controls were used

during analyses; slides for conventional negative controls were treated with

2.5% goat serum in PBS without primary antibodies; slides for sequential

IHC negative controls were used for confirmation of complete antibody and

signal stripping (Figure S2A). Further details can be found in Supplemental

Experimental Procedures.

Image Processing and Analysis
The digital image workflow encompasses three steps: image preprocessing,

visualization, and quantitative image analysis, as shown in Supplemental

Experimental Procedures. In image preprocessing, iteratively digitized images

were coregistered so that cell features overlap down to a single-pixel level,

using a CellProfiler v.2.1.1 pipeline, Alignment_Batch.cppipe (available under

General Public License version 2 [GPLv2] at https://github.com/multiplexIHC/

cppipe). Pseudocodes for algorithms used are available in Supplemental

Experimental Procedures. In the PDAC surgical specimen analysis, a heatmap

of CD45+ cell density was used for selection of three rectangle ROIs within an

intratumoral high CD45-density area (approximately 6.25 mm2, or less if the

analyzable cancerous area is smaller than 3.03 6.25 mm2) (Figure S6F). Visu-

alization was performed via conversion of coregistered images to pseudo-

colored single-marker images in ImageJ v.1.48 (Schneider et al., 2012) and

ImageScope (Leica Biosystems). In quantitative image assessment, single-

cell segmentation and quantification of staining intensity were performed using

a CellProfiler v.2.1.1 pipeline, CellID_FlowCyt-6.9.15.cpproj (available under

GPLv2 at https://github.com/multiplexIHC/cppipe). Pseudocodes for algo-

rithms used are available in Supplemental Experimental Procedures. All pixel

intensity and shape-sizemeasurements were saved to a file format compatible

with flow and image cytometry data analysis software, FCS Express 5 Image

Cytometry v.5.01.0029 (De Novo Software). Further details can be found in

Supplemental Experimental Procedures.

Flow Cytometry
Flow cytometry studies using freshly resected human tissue were performed

as described previously (Gunderson et al., 2016; Ruffell et al., 2012).

Statistics
Kruskal-Wallis tests were used to determine statistically significant differences

in unpaired and paired data. The Spearman correlation coefficient was used to

assess correlations of cell percentages and densities among cell lineages.

Overall survival was estimated using Kaplan-Meier methods, and differences

were assessed with log-rank tests. An unsupervised hierarchical clustering

was performed with Ward’s minimum variance method (hclust from R). The

p values were adjusted for multiple comparisons using Benjamini-Hochberg

false discovery rate (FDR) adjustments. All statistical calculations were per-

formed by R v.3.2.3 software (http://www.r-project.org) and SAS v.9.4 soft-

ware. p < 0.05 was considered statistically significant.

Study Approval
All studies involving human tissue were approved by institutional review board

(IRB) (protocol 809 and 3609), and written informed consent was obtained.

ACCESSION NUMBERS
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Figure S1 in reference to Figure 1: Pseudo-colored single marker IHC images from sequential multiplex IHC. 
Single channel images representing the lymphoid (Figure 1E) and myeloid (Figure 1F) biomarker antibody panels are 
shown in (A) and (B), respectively. Boxes represent area magnified. When indicated, CD3, CD68, and MHC class II 
images are merged to show colocalization in bottom panels. Scale bars = 500 µm (top) and 100 µm (middle), and 10 µm 
(bottom). 
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Figure S2 in reference to Figure 1: Validation of chromogenic multiplex IHC. (A) To validate antibody-stripping 
protocol, staining was performed in the same number of rounds in corresponding to the protocol shown in Table S1. 
Images represent chromogenic staining with labeled biomarkers and the number of round (top panel). Following AEC 
wash and antibody stripping, complete removal of antibody and signal was confirmed by incubating with only the 
detection reagent and AEC in the next sequential round (bottom panel). Scale bars = 10 µm. (B, C) Comparison between 
standard IHC and multiple rounds of sequential IHC was performed in detection of CD45 (B) and CD20 (C) in human 
tonsil, head and neck squamous cell carcinoma (HNSCC), and pancreatic ductal adenocarcinoma (PDAC) tissue. Top 
panel images represent findings of standard IHC (round 1) and AEC images in IHC round 3, 11, and 13. Scale bars = 100 
µm. Bottom graphs show cell counts of CD45+ (B) or CD20+ (C) cells quantified in five regions of 62500 µm2 area by 
image cytometry. No significant reduction of detection was observed when comparing IHC round 1 to 13. The bars show 
mean ± SD. Statistical significance determined by Kruskal-Wallis test. 
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Figure S3 in reference to Figure 2: Pseudo-colored images of single-stained multi-plexmultiplex cycles shown in 
Figure 2. Single channel images in support of Figures 2A and 2B are shown in (A) and (B), respectively. Scale bars = 50 
µm. 
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Figure S4 in reference to Figure 3: Validation of image cytometry analysis. (A) Image cytometry analysis enables 
visualization of positional linkage between dot plots and original images. Colored dots in the left panels are pointed out in 
the original AEC images (middle panel), and multiplexed IHC images (right panels). Scale bars = 100 µm. Right panel 
shows image cytometry findings on negative control slides. (B, C) Density plots in negative control slides are shown in 
support of Figures 3C and D. The x and y axes are shown on a logarithmic scale. (D) Comparison between image 
cytometry and flow cytometry in human PDAC tissues (N = 8). Representative density plots from flow cytometry (upper) 
and image cytometry (lower) are shown. (E) Pairwise associations of T cell (CD45+ CD3+), B cell (CD45+ CD19+ or 
CD20+), CD8+ T cell (CD45+ CD3+ CD8+) of total CD45+ cells are assessed by Spearman correlation coefficient. 
Estimated regression lines for each category were shown.  
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Figure S5 in reference to Figure 4: Cell density, composition, and TCGA analysis for subclassification of HNSCC.  
(A) Micrographs show multiplex IHC findings in lymphoid-, hypo-, and myeloid-inflamed subgroups in HNSCC (Figure 
4C), showing high infiltration of lymphoid cell populations in core #32, hypo-infiltration of CD45+ leukocytes in core #3, 
and high infiltration of CD68+ and CD66b+ cells in core #21. Boxes and hashed lines represent area magnified. 
Biomarkers and color annotations were shown in bottom left. Scale bars = 500 µm (top left) and 100 µm (top right and 
bottom right). Image cytometry-based quantification was shown in corresponding to IHC images. Top two panels show 
density plots of CD45 and cocktail antibodies of CD3, CD20 and CD56 (lymphoid cell markers). Image plots (bottom 
left) depict location of cells identified above by image cytometry, according to color markers below. Composition graphs 
(bottom right) show quantified cell percentages of CD45−, CD45+CD3-CD20-CD56− (non-lymphoid) and CD45+CD3-
CD20-CD56+ (lymphoid) cells of total cells, according to color markers below. (B) Kaplan-Meier analyses of overall 
survival of HPV-positive and negative HNSCC patients were shown with stratification by lymphoid- (L), hypo- (H) and 
myeloid- (M) inflamed subgroups. Statistical significance was determined via log-rank test. (C) The box-whisker plots of 
cell density in support of Figure 4C are shown. *, **, and *** show P < 0.05, 0.01, and 0.001, respectively, by Kruskal-
Wallis tests with FDR adjustments. Bars, boxes and whiskers represent median, interquartile range and range, respectively. 
(D) Comparison of gene expression between HPV-positive and HPV-negative HNSCC from The Cancer Genome Atlas 
(N = 39 and 80, respectively). TCGA HNSCC mRNA gene expression by pancan-normalized RNAseq (Illumina-HiSeq) 
(N = 564) were downloaded from UCSC cancer browser at https://genome-cancer.ucsc.edu (Data obtained in October, 
2014). 434 samples without available information of HPV-status were excluded, and total of 119 cases were analyzed by 
expression of immune cell lineage markers. Vertical axis shows log2-based gene expression normalized to all TCGA 
cancer types. Bars, boxes and whiskers represent median, interquartile range and range, respectively. *, **, ***, and **** 
show P < 0.05, 0.01, 0.001, and 0.0001, respectively, by Kruskal-Wallis tests with FDR adjustments. (E, F)  Area of 
neoplastic cell nest (% of total tissue area) was immunohistochemically assessed based on p16 (HPV-positive) and 
EpCAM (HPV-negative), and compared among the three subgroups indicated in Figure 4C (D) or between groups 
stratified by HPV-status (E). Each single dot represents one core/individual in TMA. Statistical significance in (D) and (E) 
was determined by Kruskal-Wallis test, and p values in (D) were adjusted by FDR. 
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Figure S6 in reference to Figure 5: Region of interest (ROI) selection based on leukocyte hot spot analysis in 
neoadjuvant GVAX treated PDAC. (A, B) Pseudo-colored images of single-stained multiplex cycles shown in Figure 
5A and 5B are shown in (A) and (B), respectively. Scale bars = 100 µm. (C, D) Image cytometry analyses for lymphoid 
(C) and myeloid (D) biomarker panels based on Figure 5A images are shown, together with corresponding image plots 
visualizing cells identified in the gating strategies. (E) Overview of mapping analyses of CD45+ leukocyte cell densities. 
Following generation of whole tissue-based pseudo-IHC images from hematoxylin and CD45-IHC image (left panel), a 
heat map of leukocyte cell density is generated based on quantification of CD45+ cells per area (middle panels). Excluding 
pathologist-evaluated non-malignant regions, three highest leukocyte density regions are selected and exported as ROIs 
for downstream image analysis (right panels). Magnification is shown. (F) Each single cell in the heat map of Figure 5B 
is split to three columns from independent ROIs. The data is visualized in a new heat map according to color scale (upper 
left), showing that three different ROIs are basically sharing similar signatures across immune cell lineages with mild 
variation. Overall survival (OS) and low/high myeloid inflamed profiles defined in Figure 5B are shown. (G) Immune 
cell percentages comparing low and high myeloid-inflamed profiles were quantified as a percentage of total CD45+ cells. 
Statistical significance was determined via Kruskal-Wallis tests with FDR adjustments, with * P < 0.05. 
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Figure S7 in reference to Figure 6: T cell functional biomarker panel images and quantification. (A) Single channel 
images of T cell functional biomarker panels in support of Figure 6A are shown. (B) In support of Figure 6B, 
hematoxylin and multiplex IHC images are shown in a lymphoid aggregative area of human PDAC tissues. Biomarkers 
and color annotations were shown. Scale bars = 100 µm. (C, D) Box whisker plots show Ki67 positive percentages 
evaluated in each CD8+ T cell subpopulation, comparing low vs high meyloid-inflamed profiles and long and short overall 
survival (OS) groups. Bars, boxes and whiskers represent median, interquartile range and range, respectively. Statistical 
significances between the two groups were determined via Kruskal-Wallis tests with FDR adjustments, with * P < 0.05. 
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Figure S8 in reference to Figure 7: PD-L1 expression profiles in neoplastic and immune cell lineages. (A) PD-L1 
expression on neoplastic cells in HPV-positive HNSCC tissue. Box denotes area magnified in right. Scale bars = 50 µm. 
(B) Micrographs showing PD-L1+ immune cells (red arrowheads) in 20 µm square frames. (C) PD-L1-positive % in each 
cell lineage was quantified by image cytometry. Bars, boxes and whiskers represent median, interquartile range and range, 
respectively. * P < 0.05, and ** P < 0.01, by Kruskal-Wallis tests with FDR adjustments. (D, E) Spearman correlations 
of granzyme B+ CD8+ T cells of CD45+ cells (D) or Granzyme B+ CD8+ T cell density (E) versus PD-L1+ percentages of 
total cells were shown with estimated regression lines (red) in the neoadjuvant GVAX-treated PDAC cohort (N = 24). (F) 
Spearman correlation of PD-L1+% of DC-SIGN+ DCs and Granzyme B+% of CD8+ T cells was shown with estimated 
regresssion lines (N = 24). 

 



Table S1 in reference to Figure 1. Sequential IHC panel information.

Lymphoid biomarker panel
Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

Primary Ab Hematoxylin PD-1 CD3 RORgt CD56 CD8 T-bet 
Supplier Dako Abcam Thermo Scientific EMD Millipore Santa Cruz BiotechThermo Scientific Santa Cruz Biotech
Clone/Product# S3301 NAT105 SP7 6F3.1 123C3 C8/144B H-210
Concentration 1:50 1:150 1:200 1:25 1:100 1:100
Reaction 1 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
Histofine Anti-mouse Anti-rabbit Anti-mouse Anti-mouse Anti-mouse Anti-rabbit
Reaction RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
AEC reaction time 20 min 20 min 10 min 40 min 20 min 20 min

Round 7 Round 8 Round 9 Round 10 Round 11 Round 12-1 Round 12-2 #
Primary Ab GATA-3 Foxp3 PD-L1 CD20 CD45 EpCAM p16
Supplier BD Bioscience eBioscience Cell Signaling Santa Cruz Thermo Scientific US Biological Ventana
Clone/Product# L50-823 236A/E7 E1L3N 0.N.85 H130 6k161 E6H4
Concentration 1:100 1:40 1:100 1:1000 1:100 1:500 Prediluted
Reaction RT, 30 min RT, 30 min RT, 60 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
Histofine Anti-mouse Anti-mouse Anti-rabbit Anti-mouse Anti-mouse Anti-rabbit Anti-mouse
Reaction RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
AEC reaction time40 min 20 min 40 min 20 min 40 min 10 min 20 min

Myeloid biomarker panel
Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

Primary Ab Hematoxylin Tryptase CD68 CSF1R DC-SIGN CD66b CD83 §
Supplier Dako Abcam Abacam Abcam Santa Cruz BiotecheBioscience Abcam
Clone/Product# S3301 AA1 PG-M1 SP211 DC-28 G10F5 1H4b
Conc 1:20,000 1:50 1:150 1:100 1:600 1:40
Reaction 1 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
Histofine Anti-mouse Anti-mouse Anti-rabbit Anti-mouse Anti-mouse Anti-mouse
Reaction RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
AEC reaction time 20min 20min 10min 20min 20min 20min

Round 7 Round 8 Round 9 Round 10 Round 11 Round 12-1 Round 12-2 #
Primary Ab CD163 MHC class II ¶ PD-L1 CD3/20/56 CD45 EpCAM p16
Supplier Thermo Scientific Novus Biological Cell Signaling * Thermo Scientific US Biological Ventana
Clone/Product# 10D6 SPM288 E1L3N * H130 6k161 E6H4
Conc 1:100 1:100 1:100 * 1:100 1:500 Prediluted
Reaction RT, 30 min RT, 30 min RT, 60 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
Histofine Anti-mouse Anti-mouse Anti-rabbit ** Anti-mouse Anti-rabbit Anti-mouse
Reaction RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min RT, 30 min
AEC reaction time20min 10min 40min 20min 40 min 10 min 20 min

Functional biomarker panel
Round 1 † Round 2 Round 3 Round 4 Round 5 Round 6

Primary Ab Hematoxylin CD4 CD3 PD-1 Ki67 CD8 Eomes (Tbr2)
Supplier Dako Thermo Scientific Thermo Scientific Abcam Abcam Thermo Scientific EMD Millipore
Clone/Product# S3301 4B12 SP7 NAT105 SP6 C8/144B AB2283
Conc 1:25 1:150 1:50 1:500 1:50 1:1000
Reaction 1 min RT, 30min RT, 30min RT, 30min RT, 30min RT, 30min RT, 30min
Histofine Anti-mouse Anti-rabbit Anti-mouse Anti-rabbit Anti-mouse Anti-rabbit
Reaction RT, 30min RT, 30min RT, 30min RT, 30min RT, 30min RT, 30min
AEC reaction time 20min 20min 20min 20min 20min 20min

Round 7 Round 8 Round 9 Round 10 Round 11
Primary Ab IDO Granzyme B CD68 T-bet CD45
Supplier EMD Millipore Sigma Aldrich Abacam Santa Cruz BiotechThermo Scientific
Clone/Product# 1F8.2 EP230 PG-M1 sc-21003 H130
Conc 1:100 1:100 1:50 1:100 1:50
Reaction RT, 30min RT, 30min RT, 30min RT, 30min RT, 30min
Histofine Anti-mouse Anti-rabbit Anti-mouse Anti-rabbit Anti-mouse
Reaction RT, 30min 30 min RT, 30min RT, 30min RT, 30min
AEC reaction time20min 20min 20min 20min 40min

# Round 12 was utilized only for HNSCC-TMA analysis. No antibody stripping protocol was applied between Round 12-1 and 12-2.
§ This antibody was discontinued by the supplier. We confirmed anti-DC-LAMP antibody (1010E1.01, Novus Biological, 1:100) & anti-rat 
    Histofine (414311F) & 30-min AEC work as an alternative of a mature DC marker for future studies.
¶ This antibody was discontinued by the supplier. We confirmed anti-MHC class II antibody (EPR11226, abcam, 1:5000) & anti-rabbit Histofine 
    (414141F)  & 20-min AEC work as an alternative of MHC class II for future studies.
* CD3(SP7), 1:150; CD20(0.N.85), 1:1,000; CD56(123C3), 1:25
** Anti-Mouse for 30 min, Anti-Rabbit for 30 min
† Antigen retrieval was performed by Tris-EDTA (10 mM Tris Base, 1 mM EDTA and 0.05% Tween-20, pH 9.0).



Table S2 in refernce to Figure 4. Patient and disease characteristics in HNSCC TMA

Features All patients HPV-positive HPV-negative
N = 38 N = 21 N =17

Gender
Male 29 18 11

Female 9 3 6
Age

< 60 14 8 6
60–80 23 13 10

> 80 1 0 1
T stage

 1–2 36 21 15
 3–4 2 0 2

N stage
0 20 8 12

 1–3 18 13 5
M stage

0 38 21 17
1 0 0 0

Stage
I–II 18 8 10

III–IV 20 13 7
Smoking history

Never 10 7 3
Ever 28 14 14

Alcohol consumption
Absent 22 14 8
Present 13 7 6

Unknown 3 0 3



Table S3 in reference to Figure 5. Patient and disease characteristics in GVAX-treated PDAC.

Features All patients
N = 24

Gender
Male 11

Female 13
Resection margin

+ve 4
–ve 20

Tumor size
≥ 2 cm 22
< 2 cm 2

Lymph node status
Positive 20

Negative 4
Histologic grade

Grade 1–2 19
Grade 3–4 5



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Clinical samples and TMA construction 

Human FFPE samples of HNSCC were obtained from the Oregon Health and Science University (OHSU) Knight 
Biolibrary, and the OHSU Department of Dermatology research repository. FFPE surgical specimens were obtained from 
a total of 38 patients with previously untreated oropharyngeal squamous cell carcinoma, and were used to create a TMA 
for analysis. All HNSCC samples were reviewed by a head and neck pathologist (D.A.S) to select representative tissue 
with dense, non-necrotic tumor. As control, a total of 10 adult palatine and lingual tonsillectomy specimen removed for 
benign, non-inflammatory indications (i.e. obstructive sleep apnea) were included in the TMA. The TMA was created 
using an automated microarrayer (3D Histech TMA Master; Budapest, Hungary), which took 2 mm cores from the 
selected area of the donor block and placed them into an array on the recipient block. All HNSCC tumors were staged 
according to the 7th edition AJCC/UIC TNM classification and cohort characteristics are shown in Table S2. HPV-status 
was determined by p16 staining and/or by quantitative PCR when available. Two cases of benign tonsillectomy specimen 
were excluded due to insufficient amount of tissue in the TMA. A total of 24 human PDAC tumor specimens with 
presence of intratumoral lymphoid aggregates were obtained from our previous study wherein allogeneic GM-CSF-
secreting pancreatic tumor vaccine (GVAX) was administered intradermally either alone or in combination with immune 
modulatory doses of cyclophophamide as neoadjuvant treatment for patients with resectable PDAC (NCT00727441, 
Table S3) (Lutz et al., 2014). 

 

Sequential immunohistochemistry and image acquisition 

Sections (5 μm) of FFPE tissues were placed in a 60qC heat chamber for 30 min, deparaffinized with xylene, and 
rehydrated in serially graded alcohols to distilled water. Slides were stained by hematoxylin (S3301, Dako) for 1 min, 
mounted with TBST buffer (0.1 M TRIS-HCl, pH 7.5, 0.15 M NaCl plus 0.05% Tween-20), and coverslipped with 
Signature Series Cover Glass (12460S, Thermo Scientific), followed by whole tissue scanning using an Aperio 
ImageScope AT (Leica Biosystems) at 20x magnification. After decoverslipping slides with 1.0 min. agitation in TBST, 
peroxidase activity was blocked by 0.6% hydrogen peroxidase in methanol for 30 min, and slides were subjected to heat-
mediated antigen retrieval immersed in citrate buffer (pH 6.0) or Tris-EDTA (10 mM Tris Base, 1.0 mM EDTA and 
0.05% Tween-20, pH 9.0) for 15 min. Then, sequential immunohistochemistry consisting of iterative cycles of staining, 
scanning, and antibody/chromogen stripping was performed according to a modified protocol based on previous 
reports(Glass et al., 2009; Lan et al., 1995; Tramu et al., 1978). After a protein blocking step with 5.0% goat serum, 2.5% 
BSA, and 0.1% Tween-20, unlabeled primary antibodies were added to sections at the indicated dilution shown in Table 
S1. After washing in TBST buffer, slides were visualized with either an anti-mouse or anti-rabbit Histofine Simple Stain 
MAX PO horseradish peroxidase-conjugated polymer (Nichirei Biosciences Inc.), followed by peroxidase detection with 
AEC for the indicated incubation time specified in Table S1. Cover slipping, whole tissue scanning, and decoverslipping 
were performed as described above. Following chromogenic destaining in an alcohol gradient, antibodies were stripped by 
a 15 min low power microwave heat treatment following high power boiling in Antigen Retrieval Citra Solution 
(BioGenex). Slides were then restained sequentially in the indicated order shown in Table S1. 

 

Image processing and analysis 

The digital image workflow encompasses three steps: image preprocessing, visualization, and quantitative image analysis 
as shown in below.  



 
 
A flowchart showing digital image processing workflow in multiplex IHC. Following image acquisition by digital 
slide scanner, images are subjected to three steps, consisting of preprocessing, quantification and visualization. Software 
required for this workflow is indicated as CellProfiler pipelines available at https://github.com/multiplexIHC/cppipe (¶), 
free or open-source software (#), and commercially available software (§). 
 

Image preprocessing and selection of ROI were conducted as described below. Since iteratively digitized images need to 
be precisely co-registered so that cell features overlap down to a single pixel level, coregistration of images was 
performed using a CellProfiler Version 2.1.1 pipeline, “Alignment_Batch.cppipe” developed by VA and RNB. The 



pipeline is available under GPLv2 (a widely used free software license) at https://github.com/multiplexIHC/cppipe. 
Pseudocodes for algorithms used are available in Supplementary Note 2. Based on a small number of manually selected 
single structures such as cells, vessels, and edges of tissues, the pipeline calculates global vertical and horizontal offsets 
for each image relative to the hematoxylin stained image. Using these coordinate ranges and the co-registration offsets, we 
extract a set of non-compressed TIFF images for each ROI that are aligned across the single-marker images, and ready for 
quantitative analysis and visualization. In the HNSCC TMA analysis, each ROI was selected from a total area of each 
single tissue core. In the PDAC surgical specimen analysis, a heat map of CD45+ cell density in the whole-slide digital 
images was generated based on hematoxylin and CD45-IHC images. Then, the heat map was utilized for selection of three 
rectangle ROIs within intratumoral high CD45-density area (approximately 6.25 mm2, or less if analyzable cancerous area 
is smaller than 3.0 x 6.25 mm2) (Figure S6F). 

Visualization was performed via conversion of co-registered images to pseudo-colored single-marker images in ImageJ 
Version 1.48 (Schneider et al., 2012): following coregistration, exported images were processed using an ImageJ plugin, 
Color_Deconvolution (www.mecourse.com/landinig/software/software.html) for AEC and hematoxylin signal 
separation13. Following pixel histogram optimization, images were then inverted and converted to gray-scale, followed by 
pseudo-coloring in ImageJ and ImageScope (Leica Biosystems) as described previously (Gunderson et al., 2015). 

Single cell-based segmentation and quantification of staining intensity was performed using an automated image 
segmentation pipeline "CellID_FlowCyt - 6.9.15.cpproj" (developed by VA and RNB) using CellProfiler Version 2.1.1. 
The pipeline is available under GPLv2 at https://github.com/multiplexIHC/cppipe. Pseudocodes for algorithms used are 
available in Supplementary Note 3. This customized pipeline used several AEC-stained images for assessment of signal 
intensities, and one hematoxylin-stained image for cell segmentation. First, individual RGB channels were extracted from 
the hematoxylin-stained image. Next, pixel intensities for images were inverted to optimize the algorithm’s ability to 
detect cells. Cell segmentation of the hematoxylin-stained image was then performed using a built-in watershed 
segmentation algorithm as described previously (Wählby et al., 2004). Prior to segmentation, a built-in thresholding 
method was utilized to identify local intensity maxima and minima, as well as to differentiate foreground from 
background pixels, as described previously (Padmanabhan et al., 2010). The nature of multiplex staining allows 
segmentation results (referred to as “objects”) to be used as templates for staining quantification of serially scanned AEC 
images. The color channel specific to AEC staining was extracted from each AEC-stained image. Using objects from the 
watershed segmentation, cell coordinates were overlaid onto these AEC channels, thus locating each cell on the 
biomarker-stained images. Subsequently, measurements of pixel intensity were extracted and recorded. CellProfiler also 
measured 26 different area and shape features of cells in the image. A color map was then constructed of all identified 
cells by assigning a number to each pixel within each individual cell, and saved for image cytometry analysis. Finally, all 
pixel intensity and shape-size measurements were saved to a file format compatible with flow and image cytometry data 
analysis software, FCS Express 5 Image Cytometry Version 5.01.0029 (De Novo Software).  

 
Pseudocode for image coregistration 

 
# The inputs are the script, and an array of the image files (in most cases 12 total). It is assumed the first image is 
H&E, and is only used for alignment and segmentation 
 
script, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10, image11, image12 = 
inputs 
 
 
""" Alignment """ 



 
# The implemented alignment algorithm aligns all images to the first image in the list. 
 
# Displays each image, in which the user must select a common point 
 
def find_offsets(all_image_files): 
 
 file1 = all_image_files[0] 
 
 # Reference coordinates to be compared to each other image's coordinates 
 
 file1_coordinates = [] 
 
 # X and y offsets. Image 0 (file1) has an offset of 0,0 because it's the reference image. All other images are 
aligned to it. 
 
 offsets = [ (0,0) ] 
 
 
 
 # When the user right clicks in the graph, it adds the coordinates to the coordinate list. When the window is 
closed, the script continues 
 
 # IMPORTANT: Coordinate lists must be same length. 
 
 def onclick(event, coordinate_list): 
 
  coordinate_list.append( (event.x, event.y) ) 
 
 figure1.showimage(file1) 
 
 figure1.connect("right_click_event", onclick(file1_coordinates)) 
 
 figure1.show() 
 
 
 
 # Iterate through all images (besides first "reference" image)  
 
 for x in range(1, len(all_image_files)): 
 
  filex_coordinates = [] 
 
  while len(filex_coordinates) != len(file1_coordinates): 
 
   figure1.showimage(all_image_files[x]) 
 
   figure1.connect("right_click_event", onclick(filex_coordinates)) 
 
   figure1.show() 
 



  # Offset compared to reference image (file1). Find diference between reference image and current image 
points. 
 
  x_offset = int(sum(filex_coordinates[a][0] - file1_coordinates[a][0] for a in range(0, 
len(filex_coordinates)))/len(filex_coordinates)) 
 
  y_offset = int(sum(filex_coordinates[a][1] - file1_coordinates[a][1] for a in range(0, 
len(filex_coordinates)))/len(filex_coordinates)) 
 
  # Add this image's coordinates to offsets array 
 
  offsets.append( (x_offset, y_offset) ) 
 
 
 
 return offsets 

 

Pseudocode for cell segmentation and signal quantification 
 
# The inputs are the script, and an array of the image files (in most cases 12 total). It is assumed the first image is 
H&E, and is only used for alignment and segmentation 
 
script, image1, image2, image3, image4, image5, image6, image7, image8, image9, image10, image11, image12 = 
inputs 
 
 
""" Segmentation and Data Collection """ 
 
# This code assumes the images have been aligned 
 
max_cell_size = 100 
 
min_cell_size = 10 
 
# Only segments one image, and returns labels to be applied to all images after alignment 
 
def segment(image): 
 
 # Watershed segmentation based on a distance or gradient transform 
 
 img = image.rgb2gray() 
 
 #distance = distance_transform(img) 
 
 gradient = gradient(img) 
 
 local_maxi = find_local_maxima(gradient) 
 
 markers = label(local_maxi) 
 



 labels = watershed(-gradient, markers, mask=image) 
 
 
 
 # Remove cells that are too big or too small 
 
 temp_props = regionprops(labels, image) 
 
 for cell in temp_props: 
 
  if cell['area'] < min_cell_size or cell['area'] > max_cell_size: 
 
   labels[labels == cell['label']] = 0 
 
 
 
 return labels 
 
 
 
 
 
# Collect stain data from all images except first (assumes first is H&E) 
 
def collect_data(all_image_files, labels): 
 
 # Make dataframe to store protein intensities 
 
 save_data = pd.DataFrame( col1=labels['label'], col1_name='Cells' ) 
 
 # Record label numbers, in order 
 
 save_data['Labels'] = (x['label'] for x in regionprops(labels)) 
 
 
 
 # In each image, measure the AEC level of each label 
 
 for x in range(1, len(all_image_files)): 
 
  add_data = [] 
 
  for cell in regionprops(labels): 
 
   # Access pixels of each label, overlay the image onto pixels, and record normalized RGB 
intensities 
 
   # These RGB values are normalized based on AEC staining (3-amino-9-ethylcarbazole). Values 
vary based on staining method 
 



   add_data.append(a['pixels'].read_pixels( mask=all_image_files[x], normalize=(0.274, 0.679, 
0.680) )) 
 
  save_data['Image_' + x + '_AEC'] = add_data 
 
 # Save data is organized as a pandas dataframe of rows and columns.  
 
  # The first column is the label count for individual (1 to [number of labels]) 
 
  # The 2nd-12th columns are the AEC intensity values of each label (cell) on each image. 
 
 save_data.io.save("Image_Cytometry_Results") 
 
 
 
 
 
# Make arrays of all input images 
 
all_images = [image1.asarray,  image2.asarray,  image3.asarray,  
 
     image4.asarray,  image5.asarray,  image6.asarray,  
 
              image7.asarray,  image8.asarray,  image9.asarray,  
 
              image10.asarray, image11.asarray, image12.asarray] 
 
 
 
# Dictionary of image offsets 
 
image_offsets = [] 
 
# Find offsets 
 
image_offsets = find_offsets(all_images) 
 
# Align images based on offsets 
 
for x in range(0, len(image_offsets)) 
 
 all_images[x] = realign_pixels( all_images[x], image_offsets[x] ) 
 
# Now that images are aligned, segment cells in H&E image and collect data 
 
collect_data( all_images, segment(all_images[0]) ) 
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