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� Abstract
Image cytometry enables quantitative cell characterization with preserved tissue archi-
tecture; thus, it has been highlighted in the advancement of multiplex immunohisto-
chemistry (IHC) and digital image analysis in the context of immune-based biomarker
monitoring associated with cancer immunotherapy. However, one of the challenges in
the current image cytometry methodology is a technical limitation in the segmentation
of nuclei and cellular components particularly in heterogeneously stained cancer tissue
images. To improve the detection and specificity of single-cell segmentation in
hematoxylin-stained images (which can be utilized for recently reported 12-biomarker
chromogenic sequential multiplex IHC), we adapted a segmentation algorithm previ-
ously developed for hematoxlin and eosin-stained images, where morphological fea-
tures are extracted based on Gabor-filtering, followed by stacking of image pixels into
n-dimensional feature space and unsupervised clustering of individual pixels. Our pro-
posed method showed improved sensitivity and specificity in comparison with stan-
dard segmentation methods. Replacing previously proposed methods with our method
in multiplex IHC/image cytometry analysis, we observed higher detection of cell line-
ages including relatively rare TH17 cells, further enabling sub-population analysis into
TH1-like and TH2-like phenotypes based on T-bet and GATA3 expression. Interest-
ingly, predominance of TH2-like TH17 cells was associated with human papilloma virus
(HPV)-negative status of oropharyngeal squamous cell carcinoma of head and neck,
known as a poor-prognostic subtype in comparison with HPV-positive status. Further-
more, TH2-like TH17 cells in HPV-negative head and neck cancer tissues were spatio-
temporally correlated with CD66b+ granulocytes, presumably associated with an
immunosuppressive microenvironment. Our cell segmentation method for multiplex
IHC/image cytometry potentially contributes to in-depth immune profiling and spatial
association, leading to further tissue-based biomarker exploration. © 2019 International

Society for Advancement of Cytometry
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AS emergence of immunotherapy has been revolutionizing cancer therapeutic strat-
egies, the demands on biomarkers optimizing various treatment options have been
constantly increasing (1–4). Profiling cellular complexities of tumor tissue provides a
powerful platform to understand immune characteristics associated with clinical
response to immunotherapy; thus, in situ tumor profiling and imaging have been
increasingly important toward tissue-based biomarker development.

Single-cell segmentation is a key technology in digital image analysis, as it
enables the quantitative assessment of cell frequency, localization, and phenotypes
(5–7). Previously, based on single-cell segmentation, we built an image quantitation
platform with multiplex immunohistochemistry (IHC) and image cytometry plat-
form to evaluate in situ immune characteristics where 12 immune-related markers
were quantitatively assessed by image cytometry (8). Image cytometry enables the
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evaluation of cell morphology and signal intensity, analogous
to flow cytometry, but where tumor architecture is main-
tained. However, a potential limitation of current image cyto-
metry analysis is a technical challenge for single-cell
segmentation in hematoxylin images, where CellProfiler
(CP) (9) has been adopted as a standard. Although CP per-
forms well using image-specific proper parameters, tweaking
parameters is difficult, especially when dealing with clinical
samples that show heterogeneity in shape, size, and intensity.
Thus, a fully automated and robust single-cell segmentation
method is required for not only providing a high-throughput
cell segmentation but also enhancing image cytometry for
multiplex IHC images.

In this study, we adapted our nuclei segmentation
method (7) for hematoxylin and eosin (H&E) staining to pro-
vide stable cell segmentation and minimize the cost of fre-
quent parameters tuning. In order to segment nuclei in
hematoxylin-stained images, we extracted useful morphologi-
cal features from the image using a set of Gabor filters (10).
We mapped each image pixel to a point in an n-dimensional
feature space and then clustered individual pixels with similar
features in an unsupervised setting. By doing this, nuclei seg-
mentation in hematoxylin-stained images can be effectively
performed by partitioned groups. We validated our cell seg-
mentation algorithm under the multiplex IHC setting and
confirmed that the proposed method was able to detect higher
cell numbers, although relative cellular ratios were maintained
between CP-based segmentation in the previous study (8) and
the proposed method. In addition, our method enabled the
detection of relatively rare cell populations, such as
TH17 cells, a subset of T lymphocytes associated with autoim-
mune diseases but typically represents less than 1% of total
immune cells (11). Use of this new segmentation method
allowed the analysis of these cells. Analysis revealed that rare
TH17 cell populations can be further divided into TH1-like
and TH2-like subpopulations, which correlated with differen-
tial immune characteristics of tissue. Development of an
image analytic platform based on robust and effective single-
cell segmentation can contribute to further tissue-based bio-
marker development.

BACKGROUND

In situ profiling cellular complexities of tissues and
tumors provide a unique opportunity to quantitatively

evaluate characteristic features of disease pathogenesis. With
regard to inflammation associated with cancer development
and the advent of therapies targeting immune-modulatory
programs in tumors, evaluating the complexity and functional
status of immune cells infiltrating tumor tissue provides
information not only for patient stratification but also for
monitoring metrics to discern response and/or resistance to
anticancer therapy. As such, multiplex IHC platforms have
emerged enabling robust detection of immune cell lineage
and phenotype on single-tissue sections. Rate limiting for
these platforms is their capabilities for automated high-
throughput and quantitative segmentation methods. Thus, to
improve the detection and specificity of single-cell segmenta-
tion in hematoxylin-stained images and to provide capabilities
for automated high-throughput and quantitative segmenta-
tion method, we developed a simple and effective methodol-
ogy for a fully automated and robust single-cell segmentation
approach that reduces the cost of parameter tuning.

Single-cell segmentation is vital for various fields of digital
pathological evaluation despite technical obstacles such as mor-
phological variation of tumor and stroma cells, and high cell
density leading to back-to-back formations. As a consequence,
many automatic segmentation, analysis, and computer-aided
diagnosis methods have been proposed to alleviate pathologist’s
burden (12–16). Various approaches have been proposed,
ranging from relatively simple thresholding methods (Otsu or
adaptive) to more sophisticated methods including active con-
tour, level set, watershedding with multi-scaling seeds, unsu-
pervised Bayesian, fuzzy c-means classification, supervised
methods using machine/deep learning, etc. For nuclear seg-
mentation purpose, these methods performance range from
75 to 96% accuracy (14) and are sensitive to the image quality
and tissue type. Moreover, as the most recent literature (17)
still shows new developments of a robust, practically usable
segmentation algorithm, this indicates that developing novel
segmentation methods is still an ongoing task.

In the H&E staining method, cell nuclei is stained blue
by hematoxylin, followed by counter-staining with eosin,
which colors other structures in various shades of red and
pink (18). Although cell segmentation in H&E images is a
highly challenging task, it is more difficult for multiplex IHC,
because multiplex IHC requires hematoxylin-only images
without eosin, which is resistant to signal stripping protocol.
This results in a dramatic loss of contrast. In this study, we
proposed an unsupervised method for cell segmentation in
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order to reduce an effort for parameter tuning for multiple
experimental samples, enabling the exploration of phenotypes
and spatial distribution of relatively rare TH17 sub-popula-
tions. To do this, we utilize morphological features, which
are particularly appropriate for texture representation and
discrimination.

MATERIALS AND METHODS

Nuclei and Cell Segmentation for Hematoxylin-Only

Image

Each pixel has an intensity which represents a part of
morphological features. In order to provide robust nuclei and
cell segmentation and minimize the cost of frequent parameter
tuning, we simply cluster individual pixels based on the simi-
larity of their features by extracting useful morphological fea-
tures from the image. To do so, Gabor filtering was adopted
with different frequencies and orientations, which are particu-
larly appropriate for texture representation and discrimination,
that is, edge detection in image processing (7). Also, various
features such as intensities and Gabor filters’ impulse responses
were stacked, where these features can be chosen by users. To
avoid over-segmented noisy pixels, 2D Gaussian-filtered images
were added to the feature vector. Following mapping of each
image pixel to a point in an n-dimensional feature space, each
pixel is enhanced by chosen features. Then, k-means clustering
was performed to differentiate foreground from background in
different tissues, cells, or nuclei. Finally, after clustering and
group selection, aggregated nuclei are discerned using mathe-
matical morphology operations: first, an alternate sequential fil-
ter (consecutive openings and closings with structuring
elements of increasing radii) reduced the noise and flattened
the image by erasing small local gray level variation within the
nuclei. Then, the resulting local minima (nuclei) were used into
a seeded watershed on the gradient image.

Other Segmentation Methods for Comparison

Segmentation using CP with parameter tuning. With man-
ual parameters tuning procedure, segmentation was per-
formed in CP version 2.2.0 using the “Identify Primary
Objects” module with the “Threshold strategy” parameter set
to “manual.” The primary parameters such as the cell diame-
ter (“Typical diameter of objects, in pixel units [Min, Max]”)
and the object intensity minimum threshold (“Manual thresh-
old”) were tuned for each image. After manual tuning of
parameters, the pipeline was executed and the results were
inspected visually (using the “Convert Objects To Image”
module). Parameters were re-tuned accordingly based on the
visual inspection of segmentation results. This process was
repeated with as much different iteration of parameters neces-
sary until convergence to the best possible segmentation
(as determined by visual inspection) was achieved. Additional
parameters were used to achieve satisfactory segmentation for
certain images, including suppression of local maxima within
a minimum allowed distance (using the “Automatically calcu-
late minimum allowed distance between local maxima”
parameter in the “Identify Primary Objects” module) and

objects filtering based on maximum allowed eccentricity
(using the “Filter Objects” module).

ImageJ/FIJI-based segmentation. Segmentation in ImageJ/-
FIJI (19) was performed with a custom macro created to pro-
duce a binary nuclei mask from a hematoxylin-stained image.
This macro takes the hematoxylin-stained image and per-
forms color deconvolution to separate the hematoxylin stain
from the background. Next, several preprocessing steps are
performed to enhance the nuclei stain including Gaussian
blur, median filter, contrast enhancement by 0.25% satura-
tion, and rolling ball background subtraction (19). An auto-
matic Otsu threshold is applied on the resulting image to
select foreground (20). The “Find Maxima” function is run
with the “Segmented Particles” option and noise tolerance as
an argument provided from the user to create the binary
mask. The noise parameter was visually examined at multiple
values to determine the best noise value for each image. The
output assumes each maximum belongs to a particle and seg-
ments the foreground area by watershed (21), producing a
binary image of particles identifying cells by each maximum
point and surrounding area under foreground selection. The
binarized image is post processed to remove remaining back-
ground noise with erosion, removing outliers, watershed,
median filter, “Fill holes,” dilation, and watershed again to
produce the final nuclei separation and mask. All functions
can be found with full descriptions at https://imagej.nih.
gov/ij/docs/guide/.

Multiplex IHC and Image Acquisition

Chromogenic sequential multiplex IHC and digital image
acquisition were conducted as described before (8). Briefly,
5 μm of formalin fixed paraffin-embedded tissue sections
were stained by hematoxylin, followed by whole-tissue scan-
ning using Aperio ImageScope AT (Leica Biosystems, Buffalo
Grove, IL). Following endogenous peroxidase blocking and
heat-mediated antigen retrieval, sequential IHC consisting of
iterative cycles of staining, scanning, and antibody and chro-
mogen stripping was performed. Acquired digital images were
co-registered so that cell features overlap down to a single-
pixel level, using CP pipeline (8,22). Then, pixel intensity and
shape-size measurements were saved to a file format compati-
ble with image cytometry data analysis software, FCS Express
5 Image Cytometry v.5.01.0029 (De Novo Software) (8).

Spatial Pattern Analysis

Extraction of spatial proximity and distance measurements.
Positional data extracted from multiplex IHC images were used
to measure distance from each individual neutrophil to the
TH1-like TH17 cells and TH2-like TH17 cells. Using the Quic-
khull Algorithm (23), “dsearchn” function in MATLAB, the
shortest distance between CD66b+ granulocyte centroids and
the nearest TH17 cells, was measured to determine spatial
proximity between CD66b+ granulocyte distance to TH1-like
TH17 cells and TH2-like TH17 cells, respectively. Scatter plot in
Figure 4D represents the shortest distance from all neutrophil
to the nearest TH1-like TH17 cells versus TH2-like TH17 cells.
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Local density measurement by adopting radial distribution
function. Since cell density can affect the spatial proximity of
cell–cell distances, the radial distance function was adopted as
previously reported (24). Instead of using CD66b+ granulocytes
as a reference point, each TH1-like TH17 or TH2-like TH17 cell
was considered as a reference, enabling the calculation of the
average density of CD66b+ granulocytes at a distance r. To do
this, first, k-nearest neighbors CD66b+ granulocytes from indi-
vidual TH1-like TH17 cells and TH2-like TH17 cells were
counted across distance r. Then, only the k-nearest neighbor
CD66b+ granulocyte was counted, instead of density to handle
boundary conditions. Second, an ensemble distribution of
CD66b+ granulocytes from TH1-like TH17 cells and TH2-like
TH17 cells was individually assessed in differential k values, as
shown in Figure 4E and Supporting Information Figure S5C.

Manual Cell Annotation

Hematoxylin images digitized at 20× magnification were
utilized to manually count cell segments. By using the cell
counter plugin in ImageJ, centroids of cell nucleus were man-
ually marked by three physicians and recorded.

Patient Samples, IRB Description

All digital images from human cancer tissue were de-
identically obtained under approval by institutional review
board (IRB) (protocol 809, 3609, and 5886), and written
informed consent was obtained.

Statistics

Mann–Whitney U and Wilcoxon signed rank tests were
used to determine statistically significant differences in
unpaired and paired data. Spearman rank correlation coeffi-
cient was used to assess correlations of cell percentages and
densities among cell lineages. Mann–Whitney U and Wil-
coxon signed rank tests were used for spatial relationship
analysis, and a P-value of less than 0.05 was considered as sta-
tistically significant. All statistical calculations were performed
by GraphPad Prism version 7.03. P < 0.05 was considered sta-
tistically significant.

RESULTS

We proposed a simple but effective methodology for
fully automated and robust single-cell segmentation with
reduced cost of parameter tuning. To do this, we extracted
useful morphological features from the image and group
individual pixels using clustering based on similar features
to segment nuclei. Notably, our segmentation has been opti-
mized with images stained only by hematoxylin, which lack
the cytoplasmic staining usually provided by eosin staining
(Fig. 1A–C). This provides robust segmentation results
across different cancer histological types with the same
parameter setting. However, a limitation could be the depen-
dence on image quality of hematoxylin staining, where low-
quality images lead to failure in cell detection or over/under-
segmentation even with our segmentation approach. Our
data indicate that the proposed segmentation shows better

detection of cells with higher sensitivity and specificity in
three different cancer histological types. While we observed
preserved cell ratio and composition (Supporting Informa-
tion Fig. S4), our robust and effective cell detection enabled
better detection of relatively rare TH17 cells (Fig. 3A,B).
Improved cell detection was particularly significant for sub-
population analysis, which depends on a sufficiently large
cell population.

A Cell Segmentation Method Based on Gabor

Filtering and Pixel-Based Clustering Outperforms

Standard Cell Segmentation Methods

To improve the detection and specificity of single-cell seg-
mentation, we adopted our previous method to provide better
nuclei segmentation for multiplex IHC images (see “Materials
and Methods” section). Next, we compared the new segmenta-
tion results with our previous CP-based method, which is com-
posed of the following four steps: seeding, calculation of
intensity gradient, watershed segmentation, and merging
objects with weak borders. To perform a fair comparison, an
expert user determined the optimal parameter by visual exami-
nation in order to achieve the best cell segmentation in
CP. Our method effectively detected nuclei objects with fine
edge identification, whereas the CP-based method occasionally
failed to detect objects and showed over-segmentation
(Fig. 1A–C and Supporting Information Fig. S1).

To statistically verify those observations, we utilized
nuclei objects manually identified by three independent phy-
sicians as a comparative baseline using moderate agreement
between three examiners’ annotations, so-called ground truth
(Supporting Information Fig. S2 and Table 1). Three exam-
iners marked the centroids of all visually recognizable cells in
assigned images derived from different histological cancer
types of head and neck squamous cell carcinoma, malignant
mesothelioma, and pancreatic ductal adenocarcinoma, where
malignant mesothelioma had relatively homogenous cell size
in contrast to moderate and high heterogeneity in head and
neck cancer and pancreatic cancer, respectively (Fig. 1A–C).
Based on the dilatation of annotated marks with various radii
between one and six pixels, we evaluated the overlap of
dilated annotations to see matching and discrepancy of cell
identification across three examiners. The manual cell annota-
tions by three observers were moderately consistent, where
matched annotations (overlapping or no further than three
pixels) by all three observers ranged between 70 and 76.7%,
reflecting technical challenges in heterogeneous cancer tissues
(Supporting Information Fig. S2 and Table S1).

Based on ground truth defined by manual cell identifi-
cation, our proposed segmentation method was statistically
compared with CP and additional ImageJ/FIJI-based seg-
mentation methods (https://imagej.nih.gov/ij/) with manu-
ally tuned optimal parameters (see “Materials and Methods”
section). When ground truth was set to annotations selected
by two or all physicians in consideration of inter-observer
variability of cell identification, our proposed segmentation
showed 65–78% sensitivity in the three cancer types,
whereas CP-based method remained 55% (Fig. 1D,E and
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Supporting Information Table S2). While our method and
ImageJ/FIJI-based methods showed equivalent sensitivity in
malignant mesothelioma and head and neck squamous cell
carcinoma tissues, our method outperforms ImageJ/FIJI-
based method in heterogeneous pancreatic ductal adenocar-
cinoma tissues (Fig. 1D). Specificity of our method was
approximately 90% when ground truth was set to annota-
tions identified by one or more physicians (Fig. 1E and Sup-
porting Information Table S2). Notably, our proposed

segmentation method was applied without parameter tuning,
whereas the other two methods were applied with the opti-
mal or image-specific proper parameters by an expert user
across different cancer tissue samples. Given technical chal-
lenges in heterogeneous cancer tissues and moderate consis-
tency across three examiners (70–76.7%), these observations
suggest that our method achieves reasonable performance
among different segmentation methods regardless of hetero-
geneity of cancer tissues.

Figure 1. Improved cell segmentation for hematoxylin images. Cell segmentation by CellProfiler (CP), ImageJ/FIJI, and our proposed

method were compared in three different histological cancer types of head and neck squamous cell carcinoma (HNSCC) (A), malignant

pleural mesothelioma (MPM) (B), and pancreatic ductal adenocarnoma (PDAC) (C). Hematoxylin image and nuclei segmentation label

masks based on the three methods are shown. Scale bars = 100 μm. (D and E) Segmentation methods were compared in terms of true

positive ratio and specificity/sensitivity in representative cancer histological types of HNSCC, MPM, and PDAC. For a better visual

identification, the selected magnified images are shown on the top right corner for each image where low magnified images are shown in

Supporting Information Figure S1.
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New Cell Segmentation Method Was Validated for

Image Cytometry-Based Quantification

The new cell segmentation method was, then, tested for
image cytometry-based quantification and was applied to a
previously published tissue microarray of head and neck
squamous cell carcinoma (N = 38), where immune cell line-
ages were quantitatively evaluated by CP-based cell segmenta-
tion and image cytometry (8). Image cytometry analysis with
our new segmentation method was performed, according to
matched gating strategies and lineage markers as CP-based
segmentation was applied (Supporting Information Fig. S3).
Cell percentages of total immune cells quantified by the two
different segmentation methods were highly correlated
(Supporting Information Fig. S4A), and cell compositions
were also preserved regardless of cell segmentation methods
(Supporting Information Fig. S4B). Importantly, our new seg-
mentation method showed higher cell numbers in total cells
(Fig. 2A) and most cell lineages (Fig. 2B) than CP-based seg-
mentation, which was compatible with higher cell detection
as observed in Figure 1. These results validate that the new

method preserved cell composition together with better cell
detection compared to the previous approach.

Image Cytometry Based on the New Cell

Segmentation Method Enables Analysis for

Subpopulations of TH17 Cells

Since the improved cell detection could be advantageous
for the detection of rare cell populations, we next focused on
relatively rare TH17 cells, whose role in the tumor microenvi-
ronment is still controversial (25). As shown in Figure 3A, the
new segmentation method detected a higher frequency of
TH17 cells. The new segmentation method showed a statistically
significant increase in TH17 cell detection across 38 samples in
tissue microarray (Fig. 3B), enabling subsequent analyses,
including phenotyping and sub-classification. As the presence
of subpopulations in TH17 cells has been shown in a previous
report (26), we sought to dissect TH17 populations based on T-
bet and GATA3 expressions, which represent TH1 and TH2
phenotypes in helper T-cell subsets, respectively. We observed
that T-bet and GATA3 were expressed on TH17 cells,

Figure 2. The proposed method improves detection of cell lineages in image cytometry analysis. (A) Total cell counts were compared

between CellProfiler and the proposed method. Statistical significance was determined via a Wilcoxon signed rank test. (B) The numbers

of detected cells across various cell lineages were compared between the proposed method (vertical axes) and CellProfiler (horizontal

axes). The proposed approach showed better cell detection in most of cell lineages than CellProfiler-based segmentation. Spearman

correlation coefficient was used to assess correlations of cell counts among cell lineages.
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supporting the notion that TH17 cells can be further classified
into TH1- and TH2-like subpopulations as shown previ-
ously (26).

To assess the potential biological contexts of subpopula-
tions of TH17, we next evaluated the correlation between TH1
versus TH2-like phenotypes and the presence of oncogenic
human papilloma virus (HPV), which is associated with
immunogenic characteristics (27). We found that HPV-
positive tumors (N = 21) showed a significantly higher fre-
quency of TH1-like TH17 cells than HPV-negative tumors
(N = 17), potentially related to differential immune profiles
between HPV-positive and -negative tumors (Fig. 3C).

Robust Cell Segmentation Elucidates Imaging-Based

TH17 Cell Phenotypes in Tumor Immune

Microenvironment

To further explore the significance of TH17-associated
immune characteristics, subpopulations of TH17 cells were
analyzed in tissue immunological contexts. We analyzed cor-
relations between TH17 subpopulation profiles and immune
cell frequency of 14-different lineages quantified in a previous
publication (Table 1). Without stratification into TH1 versus
TH2 phenotypes, total TH17 cells showed a positive

correlation with CD8+ T cells as well as a negative correlation
with CD163− macrophages, which is suggested by a previous
murine study (8). TH2 cells correlated with TH2-like
TH17 cells, suggesting an association with TH2-driven cyto-
kine profiles. Although TH17 has been known to recruit gran-
ulocytes via cascades of cytokine production (28), total
TH17 cells did not correlate with CD66b+ granulocyte infiltra-
tion. Interestingly, CD66b+ granulocyte infiltration negatively
correlated with TH1-like TH17 cells but positively correlated
with TH2-like TH17 cells, indicating that granulocyte recruit-
ment might be associated with TH2-polarized phenotypes in
TH17 cells, rather than total TH17 cells in the cancer microen-
vironment (Fig. 4A).

The potential relationship between TH2-like TH17 cells
and CD66b+ granulocytes was further investigated in terms of
spatial distribution of the two cell populations in cancer tis-
sues. For validation, we utilized another cohort of HPV-
negative head and neck squamous cell carcinoma (N = 9), as
we observed a high density of TH2-like TH17 cells in HPV-
negative tumors (Fig. 3C). Interestingly, TH2-like TH17 cells
were located close to CD66b+ granulocytes (Fig. 4B,C and
Supporting Information Fig. S5A,B). Compared with TH1-like
TH17 cells, TH2-like TH17 cells were significantly closer to

Figure 3. Robust cell segmentation in image cytometry enables subpopulation analysis for TH17 cells. (A) Image cytometry plots are

shown to compare frequency of TH17 cells detected by CellProfiler (top) and the proposed method (new, bottom). (B) Total cell counts of

TH17 cells were compared between the two methods. Statistical significance was determined by a Wilcoxon signed rank test. (C)

Percentages of TH1-like and TH2-like subpopulations in total TH17 cells were compared in HPV-positive (n = 21) and HPV-negative (n = 17)

tumors of head and neck squamous cell carcinoma. Statistical significance was determined via Mann–Whitney U test.
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CD66b+ granulocytes (Fig. 4D). In order to investigate poten-
tial bias derived from cell frequency, we also evaluated local
cell densities surrounding CD66b+ granulocytes (Fig. 4E and
Supporting Information Fig. S5C) with varying distance
radius (r) and the k-nearest neighbors (k). Notably, two peaks
were observed only in TH2-like TH17 cell density but not in
TH1-like TH17 cells, suggesting the presence of certain biolog-
ical interactions. The population density of CD66b+ granulo-
cytes is higher in TH2-like TH17 cell regions compared with
TH1-like TH17 cell regions (first peak in Fig. 4E). As distance
radius (r) increases, we can see the second peak of CD66b+

granulocyte density in TH2-like TH17 cell regions, although
high population densities of CD66b+ granulocytes only exist
at the small distance region (r = 1,000) in TH1-like TH17 cell
regions. Supporting Information Figure S5C shows the popu-
lation density of CD66b+ granulocyte with different numbers
of nearest neighbor cells (k). For small numbers of k (<100),
the high density peak location of TH2-like TH17 cells is
shorter than the TH1-like TH17 cells peak. For larger numbers
of k (>100), within the same radius from each cell type, the
overall CD66b+ granulocyte density from TH2-like TH17 cells
is higher than TH1-like TH17 cells’ density. These suggest the
presence of a spatial relationship between TH2-like TH17 cells
and CD66b+ granulocytes. Together, increased detection of
rare TH17 cell populations based on this new segmentation
method potentially contributes to in-depth immune profiling
and spatial association, leading to further tissue-based bio-
marker exploration.

DISCUSSION

We proposed a simple but effective methodology for
fully automated and robust single-cell segmentation with
reduced cost of parameter tuning. To do this, we extract use-
ful morphological features from the image and group individ-
ual pixels using unsupervised clustering based on similar
features to segment nuclei. Notably, our segmentation has
been optimized with images stained only by hematoxylin,
which lack the cytoplasmic staining usually provided by eosin
staining (Fig. 1A–C). This provides robust segmentation
results across different cancer histological types with the same
parameter setting. However, a limitation could be the depen-
dence on image quality of hematoxylin staining, where low-
quality images lead to failure in cell detection or over/under-
segmentation even with our segmentation approach. Our data
indicate that the proposed segmentation shows better detec-
tion of cells with higher sensitivity and specificity in three dif-
ferent cancer histological types. While we observed preserved
cell ratio and composition (Supporting Information Fig. S4),
our robust and effective cell detection enabled better detection
of relatively rare TH17 cells (Fig. 3A,B). Improved cell detec-
tion was particularly significant for sub-population analysis,
which depends on a sufficiently large cell population.

Given that the immunological properties of TH17 cells
have not been fully elucidated, we sought to dissect the char-
acteristics of TH17 cells based on multiplex IHC and image
cytometry analysis. Then, sub-populations reflecting TH1
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versus TH2 balance correlated with HPV status in head and
neck cancer, where the immunogenic background of viral-
related malignancy could be associated with TH1-based anti-
tumor immunity (Fig. 3C). Interestingly, our cell density anal-
ysis revealed that TH2-like TH17 cells correlated with
granulocytes. This observation was further validated in
another cohort of HPV-negative head and neck cancer tis-
sues. A major advantage of image cytometry is that it retains
tissue context with preserved tissue architectural information,
enabling spatial relationship analysis. Thus, we demonstrated
that TH2-like but not TH1-like TH17 cells showed closer prox-
imities to granulocytes (Fig. 4). In addition to previous exper-
imental results, our data provide human tissue-based evidence
of distinctive TH17 subpopulations and spatial association
with other immune subsets. Taken together, stratification of

TH2-like TH17 cells can contribute to further understanding of
the roles of TH17 subpopulations in tumor immunity. Simulta-
neously, our data highlight the capability for improved cell seg-
mentation and image cytometry, enabling better resolution of
immune complexity analysis with spatial relationships.

In this study, we demonstrated a proof of concept where
combinations of general image processing techniques such as
Gabor/Gaussian filters and mathematical morphology opera-
tions could improve work flow for single-cell segmentation
without dependence on manual parameter tuning. As
improvement in usability comes after the early stage of prov-
ing concepts, we did not release a single package at this time.
However, we are currently implementing our pipeline as a
user command line tool and integrating it into Galaxy (scien-
tific workflow system) to improve usability. This requires

Figure 4. Image cytometry with robust cell segmentation reveals TH17-associated tissue immunological characteristics. (A) Spearman

correlations were analyzed between TH17 cell density and cell percentages of CD66b+ granulocytes. (B) A representative case depicts

close proximity between CD66b+ granulocytes (black dots) and TH2-like (cyan circles) but not TH1-like (red circles) TH17 cells. (C) Cell-to-

cell distances from CD66b+ granulocyte to nearest TH1-like TH17 versus TH2-like TH17 cells were compared. Statistical significance was

determined via Wilcoxon signed rank test. (D) A density plot presents overall distance distribution comparing distance from CD66b+

granulocytes to nearest TH1-like TH17 (x-axis) and TH2-like TH17 (y-axis) across nine cases. (E) Microregional cell densities of TH1-like

TH17 and TH2-like TH17 cells were shown depending on distance from nearest CD66b+ granulocytes (x-axis).
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software development so that a wide range of users can run
our pipeline upon release.

In summary, this study proposed a significantly
improved cell segmentation approach for image cytometry
analysis based on multiplex IHC, which increased the detec-
tion of rare cell populations including TH17 subpopulations.
The image cytometry analyisis with improved cell detection
may provide in-depth immune profiling with maintained spa-
tial association, thereby leading to further tissue-based bio-
marker exploration.
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