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A B S T R A C T

A hallmark of the development of cancer is its ability to avoid detection and elimination by the immune system.
There are many identified mechanisms of this immune evasion that can be measured both phenotypically and
functionally. Functional studies directly show the ability of the tumor microenvironment to suppress immune
responses, typically measured as lymphocyte proliferation, cytokine production or killing ability. While a direct
measurement of function is ideal, these assays require ex vivo activation which may not accurately mimic in vivo
conditions. Phenotypic assays can directly measure the distribution and activation of immune cell types rapidly
after isolation, preserving the conditions present in the patient. While conventional flow cytometry is a rapid and
well established assay, it currently allows for measurement of only 12–14 parameters. Mass spectrometry-based
flow cytometry, or CyTOF, offers the ability to measure 3-fold more parameters than conventional optical-based
modalities providing an advantage in depth of analysis that can be crucial for precious human samples. The goal
of this report is to describe the system our group has developed to measure both the phenotype and function of
immune cells in the bone marrow of patients with acute myeloid leukemia. We hope to explain our system in the
context of previous studies aimed at measuring immune status in tumors and to inform the reader as to some
experimental approaches our group has found useful in developing the basic data required to rationally pursue
immune-based therapies for patients with cancer.

1. Introduction

Immune evasion is intrinsic to the development of cancer and is also
a mechanism that cancer cells utilize to avoid chemotherapeutic killing
and propagate relapse (Hanahan and Weinberg, 2011; Son et al., 2017).
Different mechanisms of immune evasion have been described in detail
for solid tumors. These include expansion of suppressive cell types such
as regulatory T cells (Tregs), M2 macrophages, and myeloid derived
suppressor cells (MDSC), production of immunosuppressive cytokines,
and alterations in the expression of stimulatory and inhibitory ligands,
known as immune checkpoints. Any of these mechanisms may lead to
the dysregulation and exhaustion of the immune cells normally re-
sponsible for tumor killing. Conversely, interventions aimed at blocking
these pathways may support tumor clearance. Specifically, immune
checkpoint inhibitors have shown remarkable efficacy in several solid
and hematological malignancies (Topalian et al., 2012; Hodi et al.,
2010; Ansell et al., 2015; Reck et al., 2016; Bellmunt et al., 2017;

Nghiem et al., 2016; Swain et al., 2015). Measurement of the immune
microenvironment (IME) of tumors holds the potential to rationally
predict which type of immune-based therapy, or immunotherapy, may
be efficacious in a specific tumor type. Because immunotherapies have
been shown to be efficacious as a cancer treatment, there has been a
push from both the clinical and pharmaceutical realms to initiate
clinical trials as rapidly as possible. While exciting, this urgency may
lead to a lack of mechanistic basis for the immune intervention being
tested. Clinical trials with little or no pre-clinical rationale are destined
to result in low response rates in tumors where only specific subset of
patients may benefit. Poorly targeted trials risk low response rates or
high rates of adverse effects that could negatively impact the field.
Therefore, to design appropriate therapeutic interventions that target
immune evasion, elucidating the IME of each cancer type is critical.
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2. Mass cytometry to assess hematological malignancies

Since its development, the high parameter capabilities of mass
spectrometry-based flow cytometry (mass cytometry) have been used to
characterize the hematopoietic system (Bendall et al., 2011; Bendall
et al., 2012; Newell et al., 2012; Whiting et al., 2015; Bandura et al.,
2009; Nicholas et al., 2016). Defining the various subsets of developing
and mature hematopoietic cell types requires the measurement of a
large number of parameters due to the complex phenotypes of blood
cells. For example, in order to identify hematopoietic stem cells in mice,
a combination of 6 markers (e.g. Sca-1, c-KIT, CD34, FLT-3, CD48,
CD150) plus a lineage marker “dump gate” of 5 more mature markers
(e.g. CD11b, GR1, B220, CD3, TER119) are required. In order to
identify myeloid and lymphoid precursors several more markers must
be added to this combination (e.g. IL-7R, FcγR). In humans, a similar
number of markers are needed to identify the same subsets (Chao et al.,
2008; Kiel et al., 2005). Due to spectral overlap, this number of markers
strains the capabilities of conventional fluorescence-based flow cyto-
metry (commonly referred to as FACS, an acronym for “Florescence-
Activated Cell Sorting”) and limits one's ability to add additional phe-
notypic or functional parameters on top of cellular identification. An
obstacle inherent to human research is the biologic heterogeneity be-
tween individuals. This difficulty is even more pronounced in the study
of leukemia where many subclones may be present. These limitations
make the expanded panels available in mass cytometry appealing for
complex hematologic evaluations. Due to this advantage, several
groups have used mass cytometry to assess the cellular and immune
make up in patients with heme malignancies including lymphoma
(Wogsland et al., 2017), multiple myeloma (Baughn et al., 2017), and
CML (Gullaksen et al., 2017; Bandyopadhyay et al., 2017) (Table 1).

Acute myeloid leukemia (AML) is the most common hematologic
malignancy in adults with over 19,000 patients diagnosed each year.
Only 25% of patients are cured of their disease at 5 years and this
survival rate has plateaued despite intensive chemotherapeutic regi-
mens (Deschler and Lubbert, 2006). This poor prognosis and the con-
siderable side effects from conventional cytotoxic chemotherapies have
created an impetus to explore novel treatments such as im-
munotherapies.

There have been several publications that have utilized mass cyto-
metry to evaluate the heterogeneity and dynamic changes of the tumor
phenotype in patients with AML, both before and after chemotherapy
(Behbehani et al., 2015; Ferrell et al., 2016; Diggins et al., 2015). Mass
cytometry has also been successfully utilized to investigate signaling
pathways in AML tumor cells (Han et al., 2015; Fisher et al., 2017;
Levine et al., 2015). For example, mass cytometry has been used to
associate the functional maturity of AML cells to their surface pheno-
type and demonstrate that an “immature” signaling profile associates
with poor outcome (Levine et al., 2015). An additional example of this
type of analysis was recently reported by a group who was able to
identify potential signaling pathway targets in patients with myelofi-
brosis and AML and overlay cell activation status into a hematopoietic
map (Fisher et al., 2017). A similar strategy has been used to investigate
the signaling impacts of mTOR and bromodomain inhibitors on leu-
kemic stem cell populations in patients with AML (Zeng et al., 2016;
Saenz et al., 2017). Despite these excellent investigations into AML cell
phenotypes, there remain several questions regarding the role of the
immune system in the development and relapse of AML in a large co-
hort of patients. What are the cell populations that make up the immune
microenvironment in AML? Are T cells dysfunctional in AML? Is AML
amenable to immune checkpoint inhibition? Our group set out to an-
swer these questions by developing a comprehensive system that in-
tegrates mass cytometry with functional studies to define the IME and
T-cell functional status in a large cohort of patients with AML. We
present our data here as an example of how we have chosen to use mass
cytometry to answer questions regarding the immune system in AML.
The focus of this review is not from the perspective of a lab that

developed techniques or innovates in the field of mass cytometry, but
rather that of a general user navigating the issues that result from the
large amounts of data generated by mass cytometry and how to in-
tegrate disparate data types.

3. Experimental design

We developed a multifaceted study employing phenotypic and
functional approaches to comprehensively examine the role of T-cell
dysfunction in immune evasion and the development of AML. We have
based our study design around mass cytometry as its ability for deep
characterization is ideal to assess phenotypic characteristics that can
serve as surrogates for mechanisms of T-cell dysfunction. These phe-
notypic characteristics include the activation profile, differentiation
status, and checkpoint expression of T cells along with other associated
lymphoid and myeloid immunosuppressive cell subsets. As an example,
our group is interested in detailing the relative abundance of T cell
subtypes resident in the bone marrow of patients with AML, specifi-
cally, naïve and memory subtypes (identified by CD45RA and CCR7)
along with the presence of Tregs. Tregs are critical for the initiation and
maintenance of immune tolerance in both humans and mice
(Josefowicz et al., 2012). It is hypothesized that Tregs are a central
player in immune evasion in solid tumors and several studies have
documented their presence and function in AML (Shenghui et al., 2011;
Ustun et al., 2011; Szczepanski et al., 2009; Ersvaer et al., 2010;
Kanakry et al., 2011). Tregs can be functionally identified based on
their ability to suppress the proliferation of other T cells. Phenotypi-
cally, Tregs can be identified based on surface markers (i.e. CD3, CD4,
CD25, CD127) and/or by the presence of the nuclear transcription
factor FOXP3 (Liu et al., 2006). The extended panels of mass cytometry
are ideal for the identification of the complex phenotypes of T cells with
several visualization tools that are available to aid in appreciating re-
lative cellular proportions such as sunburst plots, clustering programs
such as SPADE and methods that display high dimensional data in 2
parameter plots like viSNE (Diggins et al., 2015; Qiu et al., 2011)
(Fig. 1).

Mass cytometry is a powerful tool to profile a series of multiple
markers across various cell types. We take advantage of this ability by
characterizing the immune checkpoint receptors and their ligands,
which play a role in immune evasion. These molecules are typically
expressed in response to inflammatory stimuli as a normal negative
feedback loop to limit T-cell activation during inflammation and
maintain peripheral tolerance. Studies have shown that some cancers
may be able to upregulate ligands that engage checkpoint receptors on
T cells as a mechanism to inactivate T cells and lead to tumor escape. By
targeting the immune checkpoint complex with blocking antibodies, the
inhibitory signals can be disrupted, allowing T cells to perform their
normal function. While CTLA-4 and PD-1 are the two most well-de-
scribed checkpoint receptors, there are numerous others including TIM-
3, VISTA, LAG3, BTLA. Given the heterogeneity of expression of these
receptors and their ligands, the comprehensive panels available with
mass cytometry are ideal for detailed single cell characterization
(Fig. 2).

3.1. Antibody panel development

Commercially designed and manufactured panels are available for
use but our group chose to design four unique panels tailored to our
project's specific goals. Each panel contains specific metal-conjugated
antibodies as well as a viability stain (i.e. cisplatin or rhodium) to
distinguish live from dead cells and a DNA intercalator (i.e. iridium) to
identify cells and separate singlets from doublets.

In addition to commercially available panels, individual metal-
conjugated antibodies are available for hundreds of different human
and mouse markers. As mass cytometry use becomes more widespread,
the list of markers available for purchase should continue to rapidly
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expand. Similar to FACS, there are several benefits to choosing com-
mercially available antibodies. Specifically, these include quality as-
sessments to determine the appropriate concentration and specificity by
validating with control cell lines. It is not always possible to find
markers that are commercially available and/or conjugated to the de-
sired metal isotope. Custom conjugation kits and services are available

and easy to use.
While mass cytometry allows for measurement of more parameters

than FACS, multiple panels may still be needed to answer a particular
question. Our first panel was designed to identify T cells and their major
subtypes (naïve, effector memory, central memory, effector, and Tregs)
(Table 2). Our second panel was designed to further characterize the

Table 1
Publications using mass cytometry to study hematological malignancies.

Author(s) (year) Title Summary of findings

Lakshmikanth et al.
(2017)

Mass cytometry and topological data analysis reveal immune parameters
associated with complications after allogeneic stem cell transplantation

This report identifies measurable parameters associated with
complications post-allogeneic bone marrow transplant.

Baughn et al. (2017) Phenotypic and functional characterization of a bortezomib-resistant
multiple myeloma cell line by flow and mass cytometry

This study used mass cytometry to identify phenotypic changes in a cell
line associated with drug resistance.

Bandyopadhyay et al.
(2017)

Cholesterol esterification inhibition and imatinib treatment synergistically
inhibit growth of BCR-ABL mutation-independent resistant chronic
myelogenous leukemia

This paper used mass cytometry to identify the signaling pathway
targeted in patient samples treated with two drugs.

Chretien et al. (2017) Natural killer defective maturation is associated with adverse clinical
outcome in patients with acute myeloid leukemia

Mass cytometry was used to identify specific subsets of NK cells
associated with outcome in AML.

Gullaksen et al. (2017) Single cell immune profiling by mass cytometry of newly diagnosed
chronic phase chronic myeloid leukemia treated with nilotinib.

Mass cytometry was used to track ongoing changes in cell populations
of CML patients receiving the TKI inhibitor nilotinib

Fisher et al. (2017) Mass cytometry analysis reveals hyperactive NF Kappa B signaling in
myelofibrosis and secondary acute myeloid leukemia

Myelofibrosis and secondary AML possess intracellular signaling
phenotypes including the NFκB, MAP kinase, and PI3 kinase pathways,
and JAK-STAT pathway exhibit constitutive signal activation and
hypersensitivity to cytokine stimulation.

Wogsland et al. (2017) Mass cytometry of follicular lymphoma tumors reveals intrinsic
heterogeneity in proteins including HLA-DR and a deficit in nonmalignant
plasmablast and germinal center B-cell populations

Use of mass cytometry to obtain deep profiling of cell subsets enabled
identification of biologically important features, such as tumor
heterogeneity and loss of nonmalignant B-cell subsets.

Saenz et al. (2017) Novel BET protein proteolysis-targeting chimera exerts superior lethal
activity than bromodomain inhibitor (BETi) against post-
myeloproliferative neoplasm secondary (s)AML cells

In secondary AML cells utilizing mass cytometry coupled to SPADE
algorithm clustering of the data, authors demonstrate treatment with
ARV-825 (compared with OTX015), caused marked attenuation of
BRD4, c-Myc and p-Rb, while inducing more p21 in the CD34 + stem/
progenitor cells.

Zhou et al. (2017) Combined inhibition of β-catenin and Bcr–Abl synergistically targets
tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia
blasts and progenitors in vitro and in vivo

Combined inhibition of β-catenin and Bcr–Abl tyrosine kinase
overcomes Bcr–Abl-dependent and -independent TKI resistance, targets
BC-CML progenitors and BM niche components, and impairs
engraftment potential of LSC.

Carter et al. (2016) Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates
chronic myeloid leukemia stem cells.

Mouse models of CML were treated with combined ABL inhibitor and
Bcl-2 inhibitor. The authors used mass cytometry to track what cell type
is the major target of inhibitor treatment.

Ferrell et al. (2016) High-dimensional analysis of acute myeloid leukemia reveals phenotypic
changes in persistent cells during induction therapy

Longitudinal assessment of the impact of treatment on the cellular
milieu of the AML patient's marrow and blood Using mass cytometry
and computational analysis AML subpopulation dynamics in the early
therapy response. Data indicated AML “persister” cells can become
significantly less phenotypically stem-like immediately following
treatment

Zeng et al. (2016) MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and
triggers apoptosis in AML and AML stem/progenitor cells

Investigated mTOR inhibition on AML, using mass cytometry combined
with SPADE and viSNE analyses to evaluate phenotypic heterogeneity
of AML and AML stem/progenitor cells, and measure the altered
intracellular molecules triggered by stimuli and inhibitors. Data
indicate MLN0128 is a potent mTORC1/C2 inhibitor that selectively
targeted the AKT/mTOR pathway in AML.

Romee et al. (2016) Cytokine-induced memory-like natural killer cells exhibit enhanced
responses against myeloid leukemia

Results indicate that memory-like NK cells are distinguishable from
control NK cells from the same individual. IL-12, IL-15, and IL-
18–induced memory-like NK cells exhibited enhanced triggering against
AML regardless of KIR to KIR-ligand interactions, resulting in an
expanded NK cell pool of AML-reactive effector cells.

Levine et al. (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that
correlate with prognosis

Identified separate “functional” intracellular immaturity and surface
phenotype in pediatric AML. The data shows that functional signaling
immaturity correlates with poor outcome.

Hansmann et al. (2015) Mass cytometry analysis shows that a novel memory phenotype B cell is
expanded in multiple myeloma

Demonstrate high-dimensional cytometry data on the human
immunologic landscape of peripheral blood cells across most of the
known developmental stages of multiple myeloma (multiple myeloma,
asymptomatic myeloma, MGUS, and healthy individuals).

Han et al. (2015) Single-cell mass cytometry reveals intracellular survival/proliferative
signaling in FLT3-ITD-mutated AML stem/progenitor cells

Using mass cytometry technique LSC surface markers and intracellular
phosphoproteins in primary AML samples where characterized yielding
multiple functional signaling pathways in antigen-defined
subpopulations of AML.

Behbehani et al. (2015) Mass cytometric functional profiling of acute myeloid leukemia defines
cell-cycle and immunophenotypic properties that correlate with known
responses to therapy

This study suggests that known chemotherapy sensitivities of common
AML subsets are mediated by cell-cycle differences among LSCs and
provides a basis for using in vivo functional characterization of AML
cells to inform therapy selection.

Amir et al. (2013) viSNE enables visualization of high dimensional single-cell data and
reveals phenotypic heterogeneity of leukemia

Evaluation of AML diagnosis and relapse samples supports that the cells
first gain CD34 and subsequently acquire highly diverse abnormal
combinations of lineage-specific markers without attenuation of CD34
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functional capacity of T cells by intracellular staining for several cy-
tokines after overnight stimulation with anti-CD3 followed by inhibi-
tion of Golgi protein transport with brefeldin A. Our third panel is fo-
cused on myeloid cells and their major subsets (granulocytes, M1/M2
macrophages, monocytes, and MDSCs) along with the leukemic blast
cells (Table 3). Additional markers were included in each panel to
characterize the activation status of the cells of interest and quantify the
surface density of immunologically relevant receptors and their ligands.

Stromal components in the bone marrow are critical for normal
hematopoietic stem cell function (Morrison and Scadden, 2014). In
recent years, a large body of literature has developed showing that the
non-hematopoietic stromal components of tumors have a major impact
on tumor development and survival (Turley et al., 2015; Hanahan and
Coussens, 2012). The contribution of stromal components has been
well-studied in leukemia where they appear to be important for leu-
kemic cell proliferation, survival and chemotherapeutic resistance
(Tabe and Konopleva, 2014). For these reasons, we designed a fourth
panel to identify stromal components present in the bone marrow of
patients with AML. Staining with this panel was initially performed on
the fresh bone marrow aspirates. However, due to the low recovery of
stromal cells, our group is in the process of utilizing cultured stromal
cells isolated from patient bone marrow samples.

When creating unique panels, it is critical to plan markers and their
paired metal isotopes in advance for several reasons. Background noise,
isotope impurity, and signal detection optimization are all technical
issues that can arise during development and lead to inaccurate results.
Experts and online tools are available to prevent and/or reduce these
issues (https://www.fluidigm.com/productsupport/cytof-helios). We
begin our panel design by identifying which markers are commercially
available. These markers serve as a framework that can be filled in with
custom conjugated markers. For those that are not commercially
available we then either have them conjugated and tested by Fluidigm
or conjugate and test ourselves. Optimization and troubleshooting of
antibody metal conjugates is similar to the procedures used for con-
ventional flow cytometry antibodies. After conjugation antibodies
should be tested on samples where expression of the target is known.
Ideally, new conjugates should be tested on biological tissues with ex-
pression levels similar to those to be stained in the actual experiments
as this will yield realistic estimation of staining intensity. If staining
intensity is low, rare or unknown we will often use AML cell lines with
known expression of the antigen of interest. Finally, for antigens where
the expression pattern in actual patient tissues or cell lines is unknown
we have used expression via mammalian expression plasmids to de-
termine a positive signal. More details of issues to be considered around
panel design have been published and should be referred to when
starting to design a new panel (Leipold et al., 2015).

3.2. Functional correlates and mechanistic studies

A hallmark of tumor-mediated suppression of adaptive immune
responses is impaired proliferative and cytokine production capacity by
T cells. We have developed an ex vivo system to test these functional
parameters. For our functional assays, total bone marrow mononuclear
cells are labeled with Cell Trace Violet (Life Technologies). The labeled
cells are then incubated in anti-CD3-coated plates. We intentionally
leave out CD28 agonistic antibodies, which are common in T cell

Fig. 1. An example of T cell differentiation identification by mass cytometry. A. Plots
identifying T cell subtypes of a healthy donor (left) and patient with AML (right).
Differentiation of CD4 T cells (top row) and CD8 T cells (middle row) can be further
delineated into the following groups: Naïve (CCR7+ CD45RA+), effector (Eff CCR7−
CD45RA+), central memory (CM CCR7− CD45RA+) and effector memory (CCR7−
CD45RA−). Treg (bottom row) gating scheme of CD4 T cells by expression of CD25+
CD127−. B. Population Sunburst plots showing relative distributions of T cell subtypes
based on gating shown in A (CD4 top, CD8 bottom). C. viSNE plots showing populations
of CD4 and CD8 T cells and Tregs. All plots generated in Cytobank.
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proliferation assays, so that the cumulative co-stimulatory or co-in-
hibitory signals are supplied by the surrounding tumor cells. For our
assays, cells are harvested after 5 days of culture and the T-cell pro-
liferative capacity is assessed by FACS. At the time of harvest, the su-
pernatant from the culture is removed and frozen. A multiplex bead-
based assay is performed on these supernatants to measure the presence
of various cytokines. These cytokines help profile the skewing of T-cell
phenotypes in the context of the IME. To further define the mechanism
behind any immune suppression, these same assays are performed in
the presence of immune checkpoint inhibitors (e.g. antibodies against
PD-1, CTLA-4).

Our preliminary results suggest that samples can be subcategorized
based on the proliferative capacity of their T cells (Fig. 3). Samples in
which T cells have reduced proliferation and or cytokine production
may represent immune dysfunction. We designed our study with the
goal of correlating the phenotypic data generated from mass cytometry
with the functional data. Mechanisms that can be identified by mass
cytometry and may correlate with our functional findings include T-cell
exhaustion, skewed T-cell differentiation, checkpoint expression or in-
creased immunosuppressive subsets. Analyses to establish these corre-
lates are currently underway.

3.3. Strategies to overcome obstacles related to evaluating hematologic
malignancies with mass cytometry

Many mass cytometry studies of patient samples (peripheral blood
or bone marrow) successfully utilize protocols that yield good results
from viably frozen cell samples. A well-developed method for studying
AML cells by mass cytometry on frozen samples is available from Zeng
et al. (2017). While assessing banked frozen patient samples with mass
cytometry permits greater convenience with regard to planning and

batching experiments, the focus on fresh cells likely provides a more
accurate snapshot of the in vivo biology being measured. Beyond re-
duced cell recovery, studies have shown that assessment of frozen
samples via cytometry leads to variable cell subset representation based
on surface marker expression (Lemieux et al., 2016). Improved cell
recovery from frozen samples can be achieved by optimal sample pre-
paration (Gaudilliere et al., 2014).

Cell numbers can remain an issue even with fresh samples due to
variable and unpredictable sample procurement. Our group has opti-
mized procedures using a first generation mass cytometer and has
found cell recovery is one of the biggest limitations. Using mass cyto-
metry, other researchers have found cell numbers as low as 10,000 are
sufficient to identify the representative distribution of plentiful cells
(Yao et al., 2014). While it is possible to identify highly representative
cell phenotypes in small samples, the reality remains that rare cell
populations of interest require a large number of input events for valid
interpretation. This can be an issue when it comes to a limited resource
such as the human bone marrow that we study.

Up to 70% of cells can be lost during data acquisition in a first
generation mass cytometry instrument due to the imprecise nature of
nebulizer sample spray patterns. Taking this loss into account, our
protocol calls for a starting cell count of 3 × 106 per panel. Helios in-
struments have claimed improved efficiency up to 60%.These numbers
may be further improved by using third party fluidics upgrades. An
additional strategy that can be implemented to increase cell recovery is
designing panels that are limited to surface markers and consolidating
intracellular or intra-nuclear markers to a single panel, similar to our T-
cell cytokine panel. Staining protocols for these latter conditions re-
quire harsher buffers and additional washes that can further reduce cell
recovery.

An additional obstacle created by restricting our study to fresh

Fig. 2. Demonstration of immune checkpoints and activation
markers distributed over 10 healthy (left) and 10 AML (right)
bone marrow samples. Heat maps are distributed by first gating
on CD4 (blue), CD8 (orange), and Treg (green) populations. (For
interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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samples is the logistical issues involved in clinical acquisition, espe-
cially over long-term projects. Staining and running samples in-
dependently over a multi-year project provides the advantage of cap-
turing the biology more closely associated with each individual sample
but it also leads to the potential for increased variability in staining and
acquisition. Studies involving banked samples can overcome some of
this variability by using barcoding technology. Using mixes of palla-
dium isotopes or cisplatin, up to 20 samples can be stained and ana-
lyzed together in one tube and the individual identity of each sample
can be retrieved during data analysis (Zunder et al., 2015; McCarthy
et al., 2017).

Signal intensity of mass cytometry instruments are variable over
long runs of analysis. This can lead to difficulties in comparisons over
long-term studies. Calibration beads are included with each sample to
allow for normalization during runs (Finck et al., 2013). For another
level of quality control (QC), we have a banked sample obtained via
leukapheresis with a defined immunophenotype that is stained with a
limited panel (i.e. CD45, CD3, CD4) and serves as a standard to com-
pensate for further machine drift over multi-year projects. We chose our
three markers based on high (CD3), intermediate (CD3), and low
(CD45) staining intensity of our banked sample. This permits mea-
surement of variability across staining intensity ranges. Limiting our
control sample stain to 3 markers was purely an economic decision, in
cases where more markers are economically feasible it would be pre-
ferable to include as many as possible. Finally, during panel develop-
ment, our group utilized a strategy used in FACS and incorporated a
core group of 14 well-established phenotypic markers in each panel.
This allows for identification of basic cell types within each panel and
serves as an additional QC for stains between panels.

3.4. Computational strategies to ensure rigor and reproducibility

Critical factors that must be considered in the analysis of mass cy-
tometry data include: 1) management of multiple panels, 2) collection
protocol, 3) disease heterogeneity, which contributes to technical
variability, and 4) reproducibility in gating. To this end, we have de-
veloped a metadata-centric pipeline that merges both information from
FCS files and patient-based clinical annotation into a single file man-
ifest. Based on this manifest, files can be batch-processed by panel type,
and files that do not pass QC procedures can be flagged at each step of
analysis. The pipeline currently handles panel reconciliation, scale
transformation, quality control, automatic gating, and visualization of
both fluorescence and percentage within populations of interest
(Fig. 4). Where possible, we have implemented best practices that have
been suggested by FlowCAP (Aghaeepour et al., 2016; Aghaeepour
et al., 2013). Each step is visualized and each visualization can be fa-
ceted by clinical annotation to allow for exploration of questions based
on the clinical annotation. We leverage existing Bioconductor packages
for analysis, utilizing the flowCore (for loading FCS Files), flowWork-
space/openCyto (for developing automated gating schema), and
ncdfFlow (for on-disk processing of FCS files) packages (Finak et al.,
2014; Hahne et al., 2009; Finak et al., 2016).

With respect to QC, we initially assess staining variability by vi-
sually comparing staining for a marker within a panel for the entire set
of samples. Violin plots are used because they allow for rapid visual
comparison of distributions across many samples (Hintze and Nelson,
1998). By comparing MFIs using a z-score, samples with abnormal
staining can be flagged and identified early in the pipeline.

Table 2
Mass cytometry panel designed to focus on T-cell phenotypes in human bone marrow
samples.

Marker Common
name

Clone Metal
isotope

Purpose

CD45 LCA HI30 141Pr Hematopoietic marker
CD19 HIB19 142Nd B-cell marker
CD127 IL-7R A019D5 143Nd T-cell subtyping
CD38 ADPRC1 HIT2 144Nd Myeloid marker
CD4 RPA-T4 145Nd T-cell marker
CD8 RPA-T8 146Nd T-cell marker
CD11c Integrin Bu15 147Sm Dendritic cell marker
CD16 FcgRIII 3G8 148Nd Low affinity Fc receptor
CD25 IL-2R 2A3 149Sm Tregulatory cell and

activation marker
CD223 LAG3 874501 150Nd Checkpoint receptor
CD278 ICOS C398.4A 151Eu Activation marker
CD66b 80H3 152Sm Granulocyte marker
CD45RA HI100 153Eu T-cell subtype
TIM3 F38-2E2 154Sm Checkpoint receptor
CD27 L128 155Gd T-cell activation marker
CD14 HCD14 156Gd Monocyte marker
CD134 Ox40 ACT35 158Gd Checkpoint receptor
CD357 GITR 621 159Tb T-cell activation marker
CD28 CD28.2 159Tb Activation marker
CD152 CTLA4 14D3 161Dy Checkpoint receptor
FoxP3 259D/C7 162Dy T-regulatory cells
CD272 BTLA MIH26 163Dy Checkpoint receptor
CD185 CXCR5 51505 164Dy T-follicular helper cells
CD40 5C3 165Ho APC costimulatory protein
CD44 BJ18 166Er T-cell activation marker
CD197 CCR7 G043H7 167Er T-cell subtype
Ki-67 Ki-67 168Er Proliferation marker
CD33 WM53 169Tm Myeloid marker
CD3 UCHT1 170Er T-cell marker
CD20 2H7 171Yb B-cell marker
HLA-DR MHCII L243 173Yb MHC class II receptor
TIGIT MBSA43 174Yb Checkpoint receptor
CD279 PD-1 EH12.2H7 175Lu Checkpoint receptor
CD56 R19-760 176Yb NK marker

Table 3
Mass cytometry panel designed to detect both normal and leukemic myeloid cell popu-
lations in the bone marrow of patients with AML.

Marker Common
Name

Clone Metal
isotope

Purpose

CD45 LCA HI30 141Pr Hematopoietic marker
CD19 HIB19 142Nd B-cell marker
CD117 cKIT 104D2 143Nd Immature marker
CD38 ADPRC1 HIT2 144Nd Myeloid marker
CD4 RPA-T4 145Nd T-cell marker
CD8 RPA-T8 146Nd T-cell marker
CD11c Integrin Bu15 147Sm Dendritic cell marker
CD16 FcgRIII 3G8 148Nd Low affinity Fc receptor
CD34 581 149Sm Stem cell marker
CD86 B7-2 IT2.2 150Nd T-cell costimulatory

marker
CD123 IL-3R 6H6 151Eu Myeloid marker
CD66b 80H3 152Sm Granulocyte marker
TIM3 F38-2E2 153Eu Checkpoint receptor
CD163 GHI/61 154Sm M2 macrophage marker
CD14 HCD14 156Gd Monocyte marker
CD135 FLT3 BV10A4H2 158Gd Myeloid marker
CD115 CSF1R 9-4D2-1E4 159Tb Myeloid marker
CD13 WM15 159Tb Myeloid marker
CD80 B7-1 2D10.4 162Dy T-cell costimulatory

marker
TGF 658922 163Dy Immunosuppressive

cytokine
Arginase MHN2-25 164Dy Immunosuppressive

enzyme
Notch2 JES3-9D7 165Ho Cell fate molecule
IL-10 ICRF44 166Er Immunosuppressive

cytokine
CD11b 18/P-Stat6 167Er Myeloid marker
pStat6 2D10.4 168Er Signaling molecule
CD33 WM53 169Tm Myeloid marker
CD3 UCHT1 170Er T-cell marker
CD20 2H7 171Yb B-cell marker
CD15 W6D3 172Yb Myeloid marker
HLA-DR L243 173Yb MHC class II receptor
CD274 PD-L1 29E.2A3 175Lu Checkpoint ligand
CD56 R19-760 176Yb NK marker
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Additionally, we compare the core marker expression across panels to
assess potential intra-patient staining variability.

As previously mentioned, our experimental design requires fresh patient
samples to be run immediately upon collection. For this reason, standardi-
zation methods such as barcoding cannot be used, as they require multiple
samples to be mixed and barcoded, which is not possible with this experi-
mental protocol. Additionally, because manual gating is highly subjective, we
elected to utilize automated gating algorithms to identify cellular populations
in our cohort. Automated gating is done leveraging the openCyto framework
(Finak et al., 2014). Automated gating has been shown to be dependable and
reproducible through a number of flow Cap challenges (https://www.ncbi.
nlm.nih.gov/pubmed/23396282, https://www.ncbi.nlm.nih.gov/pubmed/
25755118, https://www.ncbi.nlm.nih.gov/pubmed/26447924, https://
www.ncbi.nlm.nih.gov/pubmed/26861911). We used several auto-gating
algorithms including flowClust (for singlet gating), mindensity (for 1

dimensional +/−), tailgate (for tails of populations), and flowDensity (for
finding quadrant boundaries) for the gating scheme. The output of all algo-
rithms was confirmed visually to ensure that they were appropriate. Due to
inter-patient heterogeneity in AML, some subpopulations may not be present
in each patient sample. To this end, we have incorporated error handling into
the openCyto package, which allows for conditional gating of child popula-
tions when the parent population is not found. Selection of autogating al-
gorithms and their associated parameters in openCyto requires multiple
iterations of testing and visual comparison of the automatic gates. We com-
pare our autogated populations with manual expert gating in order to assess
the suitability of our parameters as an additional QC step.

Once populations are identified, we explore novel markers within a
population to identify new phenotypes that exist within a subpopula-
tion. Due to technical variability, we need to estimate positive and
negative populations within a marker by automated gating on 1-

Fig. 3. Functional measurement of AML bone marrow T cells showing proliferation of CD3-gated cells after 5 days of culture via dilution of Cell Trace Violet. Histograms represent
individual AML bone marrow samples with T cells that are non-responsive (top row) or responsive to anti-CD3 stimulation (bottom row).

Fig. 4. Mass cytometry pipeline. FCS files are processed, visualized and associated with clinical annotation. Each step of analysis (QC/data transformation, automated gating using the
openCyto pipeline, and comparison of population percentages/marker expression) is visualized and assessed for potential impact on analysis.
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channel histograms within a patient sample. Within a cell population,
such as T cells, we examine the presence of subtypes.

One drawback to using mass cytometry rather than FACS is that side
scatter is not available to identify blast cells. To this end, we have de-
veloped a simple discrimination method using t-SNE to compare AML
patient samples with our set of healthy donor (HD) samples. For each
HD sample, we sample 5% from each FCS file and concatenate these
sampled rows to the AML sample in question. Graphed t-SNE is then run
on this concatenated file. HD and normal immunologic cells from the
AML samples group together, allowing for identification of the AML
cells by drawing a contour gate around the HD and normal im-
munologic cells.

4. Conclusion

Ex vivo research on rare human leukemia samples can provide va-
luable insight into the pathogenesis of the disease and potential ther-
apeutic targets. Integrating functional studies with deep immune pro-
filing gives a broad insight into the status of IME in patients with
hematological malignancies. The ability to utilize the expanded panels
available in mass cytometry is a strength over FACS that has led to our
group successfully adopting this modality as our primary means of
phenotypic analysis. We believe our strategy is generalizable to other
hematological malignancies and we have begun applying the same
techniques to acute lymphoblastic leukemia and chronic myelogenous
leukemia. The pipeline, including autogating parameters and transfor-
mation scripts, as well as our protocols will be freely disseminated for
others to use.
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