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Abstract

Biomarker assessments of tumor specimens is widely used in cancer research to audit
tumor cell intrinsic as well as tumor cell extrinsic features including the diversity of
immune, stromal, and mesenchymal cells. To comprehensively and quantitatively audit
the tumor-immune microenvironment (TiME), we developed a novel multiplex immu-
nohistochemistry (mIHC) platform and computational image processing workflow
using a single formalin-fixed paraffin-embedded (FFPE) tissue section. Herein, we
validated this platform using nine matched primary newly diagnosed and recurrent
head and neck squamous cell carcinoma (HNSCC) sections sequentially subjected to
immunodetection with a panel of 29 antibodies identifying malignant tumor cells, and
17 distinct leukocyte lineages and their functional states. Image cytometric analysis was
applied to interpret chromogenic signals from digitally scanned and coregistered light
microscopy-based images enabling identification and quantification of individual
tumor cells, structural features, immune cell phenotypes and their functional state. In
agreement with our previous study via a 12-plex imaging mIHC platform, myeloid-
inflamed status in newly diagnosed primary tumors associated with significantly short
progression free survival, independent of lymphoid-inflamed status. Spatial distribution
of tumor and immune cell lineages in TiME was also examined and revealed statistically
significant CD8+ T cell exclusion from tumor nests, whereas regulatory T cells and mye-
loid cells, when present in close proximity to tumor cells, highly associated with rapid
cancer recurrence. These findings indicate presence of differential immune-spatial pro-
files in newly diagnosed and recurrent HNSCC, and establish the robustness of the
29-plex mIHC platform and associated analytics for quantitative analysis of single tissue
sections revealing longitudinal TiME changes.

1. Introduction

With the remarkable success of immune therapies targeting T cell

checkpoint molecules, there is a significant medical need to more efficiently

stratify patients likely to respond to therapy based on tumor cell intrinsic and

extrinsic biomarkers, as well as longitudinal monitoring of patients receiving

therapy to reveal response and resistance mechanisms (DeNardo et al., 2011;

Galon et al., 2006; Palucka & Coussens, 2016; Ruffell & Coussens, 2015).

Rate limiting for these analyses is ability to deeply audit immune contexture
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using biopsy specimens or surgical resection material when available. As

such, multiple imaging platforms have emerged that enable multiplexed

monitoring of 7–60 biomarkers in tissue sections; however, the high cost

of reagents and imaging instrumentation severely limit broad use for rou-

tine analyses (Angelo et al., 2014; Gerdes et al., 2013; Stack, Wang,

Roman, & Hoyt, 2014). Polychromatic flow cytometry gets around many

of these issues where sufficient tissue is available and enables evaluation of

18+ fluorescently conjugated antibodies or more if using single cell mass

cytometry, e.g., cytometry by time-of-flight (CyTOF) (Bendall et al.,

2011). The primary limitation of these approaches is that single cell suspen-

sions are required, thus both tissue architecture and spatial assessments

are lost.

We previously reported a practical and cost effective chromogenic

sequential IHC method with iterative labeling, digital scanning and subse-

quent antibody stripping of tissue sections, to enable simultaneous evalua-

tion of 12+ biomarkers in a single formalin-fixed paraffin-embedded

(FFPE) tissue section (Tsujikawa et al., 2017). To further develop chromo-

genic mIHC, we now report a modified approach enabling quantitative

assessment of 29 biomarkers in a single FFPE tissue section, enabled by a

combination of heat and chemical stripping of antibodies and chromogen

in between immunodetection cycles. Using this platform in matched FFPE

tissue specimens from a cohort of newly diagnosed and recurrent primary

HNSCC, we revealed that specific immune complexity profiles associate

with loco-regional recurrence. These technical advancements in mIHC

and digital image analysis can be applicable to a wide variety of tissue-based

biomarker studies.

2. Results

2.1 Sequential IHC based on heat-mediated and chemical
stripping enables highly multiplexed imaging in one
FFPE tissue section

To further develop a practical and cost effective multiplexed imaging

approach, we sought to overcome a primary limitation of our previously

reported 12-plex chromogenic IHC method (Tsujikawa et al., 2017) reli-

ant on iterative cycles of horseradish peroxidase (HRP)-based detection of

primary antibodies and whole slide digital imaging, followed by heat-

mediated antibody stripping and alcohol stripping of the chromogen,

3-amino-9-ethylcarbazole (AEC). While robust, this approach is limited
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by the fact that iterative heat treatments reduce IHC sensitivity depending on

epitope/antibody states (Tsujikawa et al., 2017). To resolve this limitation,we

adopted hydrogen peroxide and methanol-based peroxidase inactivation,

commonly utilized for Western blots (Sennepin et al., 2009). Optimized

hydrogen peroxide and methanol treatment inactivates HRP of secondary

antibodies, allowing for addition of a second (or third) primary/secondary

antibody combination from a different host species before progressing to

the next round by heat-based antibody stripping (Fig. 1, see Section 4), fol-

lowing digital scanning of chromogen-stained sections, AEC chromogenic

signals are removed by methanol treatment.

Using this approach, we developed a panel of 29 mouse/rat and rabbit-

derived antibodies (Table 1) for sequential detection of lymphoid and mye-

loid immune cell lineages, stromal and epithelial markers, and functional

Fig. 1 Experimental workflow of 29-biomarker sequential IHC and image visualization.
One FFPE tissue section is preprocessed by deparaffinization, hematoxylin staining,
endogenous peroxidase blocking, and antigen retrieval, followed by +12 iterative cycles
of heat-mediated antibody stripping protocol. In each cycle, primary antibody is
detected by host species-specific secondary antibody and alcohol-soluble chromogen,
3-amino-9-ethylcarbazole (AEC), followed by chromogen stripping and horseradish per-
oxidase (HRP)-inactivation, allowing detection of another primary antibody based on
different host species.
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Table 1 Sequential IHC panel information.
Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10 Cycle11 Cycle12 Cycle13 Cycle14 Cycle15

R1 R2 R5 R7 R9 R11 R13 R15 R17 R19 R21 R23 R25 R27 R29

Primary Ab Hematoxylin tBTK PD1 PD-L1 ICOS GATA-3 CD66b CD45 T-bet GzmB CD68 CD4 Ki67 SMA p16

Clone/

Product#

D3H5 NAT105 E1L3N SP98 L50-823 G10F5 H130 EPR9301 GB7 PG-M1 SP35 SP6 ab5694 E6H4

Vender Cell

Signaling

Abcam Cell

Signaling

LSBio BD eBioscience Thermo

Scientific

Abcam BioRad Abacam Ventana Sigma-

Aldrich

Abcam Ventana

Host sp Rb IgG Ms IgG Rb IgG Rb IgG Ms IgG Ms IgM Ms IgG Rb IgG Ms IgG Ms IgG Rb IgG Rb IgG Rb IgG Ms IgG

Conc. 1/50 1/50 1/100 1/25 1/100 1/600 1/100 1/100 1/200 1/50 1/8 1/1000 1/200 Original

Reaction 1min RT,

30min

RT,

30min

RT,

60 min

RT,

30min

RT,

30min

RT,

30min

RT, 30min RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

AEC 40min 40min 40min 40min 40min 20min 40min 20min 20min 20min 20min 20min 20min 10min

Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle10 Cycle11 Cycle12 Cycle13 Cycle14 Cycle15

Cycle1 R3 R6 R8 R10 R12 R14 R16 R18 R20 R22 R24 R26 R28

Primary Ab DC-LAMP EOMES NKp46 DC-SIGN CSF1R CD3 CD8 CD163 MHC II CD20 Foxp3 Tryptase Pan-CK

Clone/

Product#

1010E1.01 ab2283 195314 DC-28 SP211 SP7 SP16 10D6 EPR11226 SP32 236A/E7 AA1 AE1/AE3

Vender Novus

Biological

EMD

Millipore

R & D Santa

Cruz

Abcam Thermo

Scientific

Thermo

Scientific

Thermo

Scientific

Abcam Sigma-

Aldrich

eBioscience Abcam Abcam

Host sp Rat IgG Rb IgG Ms IgG Ms IgG Rb IgG Rb IgG Rb IgG Ms IgG Rb IgG Rb IgG Ms IgG Ms IgG Ms IgG

Conc. 1/100 1/1000 1/20 1/100 1/300 1/150 1/100 1/100 1/20000 1/2000 1/1000 1/200000 1/2000

Reaction RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

30min

RT,

60min

RT,

30min

RT,

30min

RT,

30min

AEC 30min 20min 20min 20min 20min 20min 20min 20min 10min 20min 20min 20min 10min

R4 at Cycle2: Primary Ab, RORgt (Clone 6F3.1, EMD Millipore, Ms IgG, 1/200, RT, 30min), AEC 10min
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markers in one FFPE tissue section (Fig. 2A–F). As complete signal clearance

is needed for detection of subsequent biomarkers, we validated complete loss

of antibody and chromogen by comparing heat-mediated antibody stripping

(Tsujikawa et al., 2017) with hydrogen peroxide and methanol-based HRP

inactivation (Fig. 3). With the exception of some murine and rat antibodies,

we did not observe significant cross reactivity among antibodies from differ-

ent species, enabling validation for placement of antibodies in specific cycles

(Table 1).

2.2 mIHC images are quantitatively evaluated by image
cytometry analysis with preserved tissue-context
information

Quantitative assessment is vital for imaging-based biomarker exploration;

thus, we utilized an image analysis pipeline including image cytometry

for evaluation of the 29-plex images. Image cytometry is a multiparameter

A

B

C

D

E

F

Hematoxylin

Tissue/stromal markers Lymphoid lineage markers

Myeloid lineage markers Helper T cell markers

Macrophage/myelomonocytic markers T cell functionality markers

aSMA
Nuclei CD45
panCK
p16

NKp46
Nuclei CD3
CD20
ICOS tBTK

RORgt
Nuclei CD4
Foxp3
GATA3 Tbet

Eomes
Nuclei CD8
PD1
Ki67 Granzyme B

CD163
Nuclei
CSF1R
PD-L1

CD68

CD66b

Nuclei MHC class II
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DC-LAMPDC-SIGN

500µm

100µm

500µm

100µm

500µm

100µm
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100µm
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Fig. 2 Representative images of 29-biomarker mIHC to visualize immune cell pheno-
types in a single FFPE section of human tonsil. Pseudocolored images of mIHC staining
based on a single FFPE tissue section of human tonsil. Chromogenic signal was
extracted for each marker, pseudocolored and overlaid in ImageJ to simultaneously
visualize TiME compartments for tissue/stromal markers (A), myeloid cell lineage
markers (B), macrophage/myelomonocytic lineage markers (C), lymphoid lineage
markers (D), helper T cell markers (E), and T cell functionality markers (F). The boxes
depict magnified areas. Scale bars and colors are shown.
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cytometric approach via quantification of chromogenic intensities based

on single cell segmentation using CellProfiler (Carpenter et al., 2006).

Hematoxylin-stained images are used for single cell nuclear segmentation,

followed by quantification of chromogenic signals in serial AEC-stained

images, enabling “flow cytometry in image” based on multiparametric

information including cell size, compactness, and location with chromo-

genic intensity for each biomarker (Tsujikawa et al., 2017). This quantifi-

cation was applied to the 29-biomarker multiplex mIHC images, where

lymphoid, myeloid, and stromal components were assessed based on hier-

archical gating strategies (Fig. 4 and Table 2). The output from this image

analysis pipeline is assignment of a phenotype, e.g., tumor cell, CD8+ T cell

or macrophage, etc., for each cell in the image. Importantly, image cyto-

metry enables analysis of spatial characteristics based on cell location and

tissue context information, enabling in-depth analysis of various immune

cell lineages in the tumor-immune microenvironment.

CD68 signal
stripping test CD3CD68

A B C

Fig. 3 Validation of methanol-based peroxidase inactivation for mIHC. (A) CD68 mIHC
visualization (left panel) shows specific and strong staining in human tonsil tissue. Fol-
lowing CD68 visualization, chromogen was stripped and HRP was inactivated using
hydrogen peroxidase (0.6%) diluted in 100%methanol. AEC was reapplied and no chro-
mogenic signal was detected (B), confirming efficient and complete stripping of CD68
signal. (C) Then, CD3 antibody was detected with secondary and AEC chromogen, show-
ing distinct, specific, and strong signal. Scale bars¼500μm (low magnification) and
50μm (high magnification).
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2.3 29-biomarker mIHC analysis of primary and recurrent
HNSCC reveals profound differences in immune cell
complexities

To verify the potential of 29-biomarker mIHC, we evaluated matched pri-

mary and recurrent HNSCC tumor specimens from 9 patients, as compared

to our previous results obtained from 12-plex mIHC imaging of 38 primary

HNSCC specimens (Tsujikawa et al., 2017). Following quantification of

cell percentages of 17-distinct immune cell lineages identified by image

cytometry gating strategies (Fig. 4), immune complexity profiles of primary

versus loco-regionally recurrent HNSCC tissues were comparatively

assessed (Fig. 5A). In the recurrent status, as compared to newly diagnosed

Fig. 4 Multiparameter cytometric image analysis toward quantification of the mIHC.
Image cytometry-based cell population analyses for 29-biomarkers are shown. The
markers used for identification of cell lineages are shown in Table 2. Single cell segmen-
tation results were utilized as templates for quantification of serially scanned AEC
images, and pixel intensities of chromogenic signals and area-shape measurements
were extracted and recorded by single cell-analysis together with location in original
images. Gating thresholds for qualitative identification were determined based on data
in negative controls. The x and y axes are shown on a logarithmic scale.
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primary HNSCC tumors, the percentage of TH0 and CD20+ B cells signif-

icantly decreased while immature DC-SIGN+ DCs and several myeloid lin-

eages increased, indicating presence of distinct immune profiles between

primary and recurrent disease (Fig. 5A). Since we previously reported that

HNSCC tumors classified into lymphoid and myeloid-inflamed subgroups

based on tumor-immune complexity and associated with clinical outcomes

Table 2 Selective markers utilized for lineage identification.
Lineage Identification

Neoplastic epithelium CD45– PanCK+

Myofibroblastic CAFs CD45– PanCK– aSMA+

TH0 (naı̈ve) helper T cells CD45+ CD3+ CD4+ CD8– Foxp3– RORgt– Tbet–

GATA3–

Regulatory T cells (TREG) CD45+ CD3+ CD4+ CD8– Foxp3+

TH 17 helper T cells CD45+ CD3+ CD4+ CD8– RORgt+

TH 2 helper T cells CD45+ CD3+ CD4+ CD8– GATA3+

TH 1 helper T cells CD45+ CD3+ CD4+ CD8– Tbet+

CD8+ T lymphocytes CD45+ CD3+ CD4– CD8+

Natural killer cells (NK) CD45+ CD3– CD20– NKp46+

B cells CD45+ CD3– NKp46– CD20+

CD66b+ granulocytes CD45+ CD3/CD20/NKp46– CD66b+

Mast cells CD45+ CD3/CD20/NKp46– CD66b– Tryptase+

CD163– TAM CD45+ CD3/CD20/NKp46– CD66b– Tryptase–

CD68+ CSF1R+ CD163–

CD163+ TAM CD45+ CD3/CD20/NKp46– CD66b– Tryptase–

CD68+ CSF1R+ CD163+

CD163– myelomonocytic CD45+ CD3/CD20/NKp46– CD66b– Tryptase–

CD68+ CSF1R– CD163–

CD163+ myelomonocytic CD45+ CD3/CD20/NKp46– CD66b– Tryptase–

CD68+ CSF1R– CD163+

DC-SIGN+ DC CD45+ CD3/CD20/NKp46– CD66b– Tryptase–

CD68– HLA+ DC-SIGN+

DC-LAMP+ DC CD45+ CD3/CD20/NKp46– CD66b– Tryptase–

CD68– HLA+ DC-LAMP+

9High-dimensional multiplexed immunohistochemical characterization
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Fig. 5 29-Biomarker mIHC analysis of primary and recurrent HNSCC reveals differences
in immune cell complexities. (A) Immune cell frequency comparing newly diagnosed
primary and recurrent primary tumors (N¼9) was quantified as a percentage of total
CD45+ cells. Bars, boxes and whiskers represent median, interquartile range and range,
respectively. Statistical differences were determined viaWilcoxon signed rank tests, with
*P<0.05. (B) Immune cell percentages of total CD45+ cells were shown as a heat map
according to a color scale (upper left). The top dendrogram shows the result of
unsupervised hierarchical clustering, depicting lymphoid and myeloid-inflamed sub-
groups. Percentages of dysfunctional (potentially exhausted) PD-1+Eomes+ CD8+

T cells (TEX) and days to recurrence shown at the bottom, according to color scales.
(C) Kaplan-Meier analysis of PFS of primary tumors stratified by clusters identified in
(B). Statistical significancewas determined via log-rank test. (D) Averages of percentages
of CD45+ cells were comparatively evaluated in newly diagnosed primary and recurrent
primary tumors. (E) ICOS+ percentages of total TREG comparing newly diagnosed primary
and recurrent primary tumors are shown (N¼9). Statistical difference determined via
Wilcoxon signed rank tests, with **P<0.01. (F) Combined positive score (%) of PD-L1
(total PD-L1+ cells/total tumor cells) are compared between newly diagnosed primary
and recurrent primary tumors. Numbering shows case ID shown in (B).
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(Tsujikawa et al., 2017), we next explored potential immune signatures based

on the composition of tumor-infiltrating immune cells. An unsupervised

hierarchical clustering analysis revealed presence of two distinct immune

complexity profiles, where lymphoid and myeloid lineage cells were differ-

entially present (Fig. 5B). Interestingly, matched newly diagnosed and recur-

rent primary tumors were generally classified into the same cluster except for

two cases (Case #6 and #7, see Fig. 5B, highlighted gray), implying presence

of individual host-derived immune signatures maintained throughout recur-

rence. Notably, the type of immune infiltrate in primary tumors was associ-

ated with duration to recurrence, where myeloid-inflamed profiles exhibited

shorter progression free survival (PFS) as compared to lymphoid-inflamed

profiles (Fig. 5C).

As indicated in Fig. 5A, specific immune cell lineages were differentially

present in newly diagnosed and recurrent primary tumors, despite generally

maintained lymphoid versus myeloid-inflamed profiles, thus, we focused on

identification of specific cell lineages associated with primary/recurrent sta-

tus. Comparative analysis again revealed preserved proportions of immune

cell lineages between primary and recurrent status; however, myeloid cell lin-

eages highlighted by CD66b+ Gr and immature DC-SIGN+ DCwere more

frequently observed in the recurrent status (Fig. 5D), potentially associated

with immunosuppressive profiles identified in our previous analyses (Carus,

Ladekarl, Hager, Nedergaard, & Donskov, 2013; Chaput, Conforti, Viaud,

Spatz, & Zitvogel, 2008; Ilie et al., 2012). Furthermore, as compared with

newly diagnosed primary tumors, recurrent primary tumors had significantly

higher expression of ICOSbyTREG cells (Fig. 5E), a notable finding as this has

been associated with dysfunctional antitumor immunity (Tu et al., 2016).

Together (Fig. 5D–E), these data indicate that recurrent status associates

with increased presence of immunosuppressive cell types in primary tumors.

Finally, since PD-L1 expression profiles, especially combined positive scores

(CPS) containing PD-L1 of both tumor and immune infiltrates, have been

recently identified as a biomarker candidate for immune checkpoint blockade

in HNSCC (Rischin et al., 2019), we comparatively evaluated CPS in pri-

mary and recurrent status (Fig. 5F), to reveal broad variations in dynamics

of PD-L1 scoring. Although several of the cases evaluated herein exhibited

preserved PD-L1 scoring in both newly diagnosed and recurrent primary

tumors, two of nine (#2 and #6) revealed significant differences, potentially

related to phenotypic and proportional changes in tumor and immune cells

(Fig. 5F), and highlight the clinical issue of distinct immune complexity pro-

files in primary and recurrent disease, where myeloid-inflamed profiles are

associated with shorter duration to recurrence.

11High-dimensional multiplexed immunohistochemical characterization
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2.4 Longitudinal immunospatial profiling reveals differential
spatial pattern of tumor-immune cell distribution in
primary and recurrent HNSCC

Since 29-biomarker mIHC serves as a powerful platform to evaluate spatial

relationships of tumor-immune lineages with preserved tissue architecture,

we sought to develop an analytic workflow to quantitatively assess spatial

patterns of tumor and immune cells, comparing primary and recurrent

HNSCC (Fig. 6A). Neighbor cell analysis, typically utilized for cell-cell
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Fig. 6 Comparative analysis of primary and recurrent HNSCC reveals the dynamics of
immunospatial profiles. (A) A schematic overview of immunospatial complexity analysis
based on 29-plex IHC is shown. Spatial pattern analysis performed based on calculation of
pair correlation function, which represents the probability of finding an object at a dis-
tance away froma reference cell, independent of cell density of object cell lineages. Three
examples demonstrate representative patterns of spatial distribution as the value of one
stands for independent distribution. (B, C) Averages of pair correlation function based on
distance from tumor cells are shown (N¼9) in lymphoid (B) and myeloid lineages (C).
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spatial relationship studies, has a fundamental limitation, where cell-cell dis-

tance is extensively affected by cell densities. To address this, we adopted pair

correlation function analysis (Ripley, 1977; Strand, Robinson, & Bunting,

2007), which represents the probability of finding an object at a distance away

from a reference cell, while also normalizing for cell densities (see Section 4,

Fig. 6A). This workflow was applied for analysis of spatial relationships

between tumor cells and 17 different immune cell lineages. Interestingly,

among lymphoid lineages, NK cells had a closer proximity to tumor cells

in both primary and recurrent HNSCC compared to CD8+ T cells, indicat-

ing exclusion of CD8+ T cells by tumor nests (Fig. 6B). TREG cells were

located far from primary tumor cells, while they were much closer in recur-

rent disease, thus revealing a potential dynamic associated with transition

from primary to recurrent status. Amongmyeloid cell lineages, recurrent pri-

mary tumors generally exhibited close proximity between tumor and mye-

loid cells, indicating presence of myeloid-inflamed microregional profiles

(Fig. 6C). Together with observations in Fig. 5, 29-plex mIHC with statis-

tical strategies for spatial pattern analysis revealed longitudinal changes of

immunospatial profiles potentially associated with disease progression and

locoregional recurrence of HNSCC.

3. Discussion

Herein we describe advancement of mIHC methods enabling deep

auditing of immune contexture in human cancer specimens. Our previously

publishedmIHCmethod involved detection of a single antibody species with

a peroxidase-conjugated secondary and chromogen, within a single heat-

mediated stripping cycle (Tsujikawa et al., 2017). We have advanced this

method by instead utilizing chemical inactivation of peroxidase (on the sec-

ondary antibody) after detection of the first antibody, thereby enabling detec-

tion of two or more antibody species within a single heat-strip cycle. This

methodological advancement increases the number of antibody targets that

can be detected on a single FFPE section by two- to threefold (29 total in

the current study), enabling deeper identification of cellular lineages and func-

tional states. Further, detection of 29+ biomarkers within a single FFPE tissue

section is expected to support unprecedented exploration of cell-cell location

relationships in the TiME with relatively low cost, ease of adaptation, and

flexibility. Altogether this technological advancement supports deeper explo-

ration of immune contexture in human cancers and is expected to enable

discovery of predictive biomarkers or targets for therapy.

13High-dimensional multiplexed immunohistochemical characterization
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Accumulating evidence indicates that the TiME regulates disease pro-

gression, recurrence and response to therapy in a wide variety of cancer types

(Fridman, Pages, Sautes-Fridman, & Galon, 2012; Palucka & Coussens,

2016). Utilizing the 29-plex approach, we focused on comparing contexture

and spatial dynamics of immune complexity between primary and recurrent

HNSCC; intratumoral immune cell proportions revealed presence of lym-

phoid andmyeloid-inflamed profiles (Fig. 5), similar to our previous studies

from head and neck oropharyngeal cancer (Tsujikawa et al., 2017),

vaccination-treated pancreatic ductal adenocarcinoma (Tsujikawa et al.,

2017), and pathologically aggressive papillary thyroid carcinoma (Means

et al., 2019). Importantly, lymphoid-inflamed status in primary tumors

was associated with favorable PFS (Fig. 5C), presumably indicating pres-

ence of antitumor immunity slowing disease progression. Furthermore,

longitudinal analysis comparing newly diagnosed and recurrent primary

tumors revealed that recurrent status could be inflamed by myeloid cells

especially for immature DC and CD66b+ Gr, together with immunosup-

pressive ICOS+TREG, potentially related to mechanisms of disease progres-

sion. The present study also focused on PD-L1 scoring of both tumor and

immune cells, which has been identified as a candidate biomarker for

immune checkpoint blockade in HNSCC (Rischin et al., 2019). Our data

revealed a wide range of PD-L1 staining in both newly diagnosed and recur-

rent primary tumors (Fig. 5F), that could be linked to variation of PD-L1

status reflecting intratumoral heterogeneity, but more likely instead

reflecting differential immune profiles associated with longitudinal changes

in PD-L1 status.

As Galon and colleagues have developed Immunoscore to characterize

the distribution of T cells in the TiME (Fridman et al., 2012; Galon

et al., 2006), spatial patterns of immune cells have been considered to pro-

vide key information aiding development of immune-related biomarkers.

Beyond limitations in conventional IHC- or IF-based approaches, our

imaging approach allows evaluation of 17 immune cell lineages, cancer asso-

ciated fibroblasts and tumor cells in a single tissue with preserved tissue archi-

tecture, enabling comprehensive assessment of spatial patterns of cellular

components in the TiME (Fig. 6A). In this study, we focused on the immu-

nospatial relationship of various types of immune cells to tumor cells, and

found CD8+ T cell exclusion and sympatric distribution of TREG and mye-

loid cells in recurrent HNSCC (Fig. 6B and C). Although the present study

has a considerable limitation due to the small sample size (N¼9), requiring

careful interpretation of results in the clinical context, our statistical
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approaches for spatial relationship analysis provide a basis for further

extensive immunospatial bioinformatics based on 29-plex mIHC imaging

platform.

Finally, this study establishes the validity of a novel 29-plex mIHC tech-

nology for analysis of single surgical/biopsy tissue sections and reveals differ-

ential immune complexity profiles of recurrent versus primary HNSCC.

Those observations provide important insights into potential mechanisms

of tumor recurrence and therapeutic failure that will guide future develop-

ment of biomarker and therapeutic targets in HNSCC.

4. Material and methods

4.1 Clinical samples
Study subjects were nine patients with recurrent HNSCC after definitive

surgery, chemotherapy, and/or radiation therapy. Matched FFPE tissue spec-

imens from the newly diagnosed primary and recurrent primary tumors for

each patient were obtained from the Oregon Health and Science University

(OHSU) Knight Biolibrary. Tissue specimens were de-identified and coded

with a unique identifier prior to analysis. Demographic and clinical data

including HPV status, tobacco and alcohol use, treatment regimens, and

survival outcomes was collected. All HNSCC tumors were staged according

to the eighth edition AJCC/UIC TNM classification and cohort character-

istics are shown in Table 3. All studies involving human tissue were approved

by institutional IRB (protocol #809 and #3609), and written informed

consent was obtained.

Table 3 Patient and disease characteristics.
Variable N (%)

Average age at diagnosis 61

Gender

Male 2 (22%)

Female 7 (78%)

Race

White 8 (89%)

Asian 1 (11%)

Continued
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4.2 Sequential immunohistochemistry and image acquisition
This staining methodology builds upon our previously described methods

(Tsujikawa et al., 2017), with addition of detecting up to two primary anti-

body targets in each staining cycle by taking advantage of primaries

produced in different species and a robust method to inactivate HRP on sec-

ondary antibodies. Sections of FFPE tissue (5μm) were baked at 60 °C for

60min, deparaffinized with xylene, and rehydrated in serially graded alco-

hols, then placed in distilled water. Slides were stained with hematoxylin

Table 3 Patient and disease characteristics.—cont’d
Variable N (%)

Tumor site

Oral cavity 4 (44%)

Oropharynx 2 (22%)

Larynx 3 (33%)

Staging

Stage 1 2 (22%)

Stage 2 1 (11%)

Stage 3 1 (11%)

Stage 4 5 (56%)

HPV status

Negative 9 (100%)

Positive 0 (0%)

Smoking history

Yes 5 (56%)

No 4 (44%)

Alcohol history

Yes 7 (78%)

No 2 (22%)

Management

Platinum + Radiation 6 (67%)

Cetuximab + Radiation 3 (33%)

16 Grace Banik et al.

ARTICLE IN PRESS



(Dako, S3301) for 1min, mounted with 1� TBST buffer (Boston

Bioproducts, IBB-181R), coverslipped with Signature Series Cover Glass

(Thermo Scientific, 12460S), and subjected to whole slide digital scanning

at 20� magnification using an Aperio ImageScope (Leica Biosystems).

Slides were de-coverslipped with 1.0min of agitation in TBST, endoge-

nous peroxidase activity was blocked (0.6% H202 diluted in methanol,

30min at room temperature), then slides were subjected to heat-mediated

antigen retrieval in 1� pH 6.0 citrate buffer (Biogenex Laboratories,

HK0809K) for 20min at 95 °C. Then, slides were subjected to 12+ cycles

of mIHC, where each cycle started with by annealing multiple primary

antibodies, detecting the first primary antibody with a HRP-conjugated

secondary antibody following by chromogen development, and whole

slide digital scanning. Then, chromogenic signal was stripped and inacti-

vation of the HRP-conjugated secondary used to detect the first primary

was achieved by incubating slides with 0.6% hydrogen peroxidase diluted

in methanol for 30min. Then, secondary antibody to detect the next pri-

mary (that was annealed at the start of the cycle but not visualized yet) was

added, AEC chromogen was developed, and digital whole slide imaging

was performed. Using this approach allowed the detection of up to two

distinct primary antibodies (rounds) within a single heat stripping cycle.

The antibodies (clones, manufacturer, and dilution) that were used are

listed in Table 1.

4.3 Image processing and analysis
Image processing and analysis were performed using ImageJ Version 1.48

(Schneider, Rasband, & Eliceiri, 2012), CellProfiler Version 2.2.0, and

FCS Express 6 Image Cytometry RUO, in analogous to the previously

reported 12-plex mIHC image analytic workflow encompassing image

processing, visualization, and quantification (Tsujikawa et al., 2017).

For image processing, image coregistration was performed to align

images vertically so that single-cell measurements can be associated across

images as previously reported (Tsujikawa et al., 2017). Following image

coregistration, the images were preprocessed by AEC signal extraction,

using a custom macro for color deconvolution in ImageJ Version 1.48

(Schneider et al., 2012), where Color_Deconvolution [H AEC] was used

to separate hematoxylin and AEC chromogen signal from background,

followed by signal cleaning and background elimination (Ruifrok &

Johnston, 2001).
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For visualization, images were converted from RGB to CMYK in

ImageJ with the NIH plugin RGB_to_CMYK (https://imagej.nih.gov/

ij/plugins/cmyk/index.html) to extract AEC signal in the yellow channel,

then overlaid in pseudo-color in imageJ and ImageScope (Leica Biosystems).

For quantification, images produced in color deconvolution were

utilized to quantify single cell mean intensity signal measurements for

every stained marker, using CellProfiler Version 2.2.0 with the pipeline

“29Plex_CellProfiler.cpproj.” The pipeline is available under GPLv2 at

https://github.com/multiplexIHC/29plex-IHC. All pixel intensity and

shape-size measurements were saved to a file format compatible with flow

and image cytometry data analysis software, FCS Express 6 Image Cytome-

try RUO Version 6.05.0028 (De Novo Software). In image cytometry

analysis, cell lineages were quantitatively evaluated based on the gating

strategy shown in Table 2 and Fig. 4. Gating thresholds for qualitative iden-

tification were determined based on data in negative controls. Immune cell

numbers were normalized as percentages of total CD45+ cells, and sub-

jected to unsupervised hierarchical clustering based on Ward’s minimum

variance method, using “hclust” from “R.”

For spatial analysis, the point pairwise correlation function, Ripley’s

K (Ripley, 1977), was used to determine the spatial correlation between

subtypes of immune populations. Using FCS Express 6 Image Cytometry

RUO, the location for each cell centroid were exported as the coordinate

for each cell. Pair correlation function was calculated by algorithms written

in C++ (http://takenaka-akio.org/etc/pair_cor/), where an adjacency dis-

tance matrix for each cell type of interest was used to determine pair corre-

lations and describe cell patterns in a given region.

4.4 Statistics
Wilcoxon signed rank tests were used to determine statistically significant

differences in paired data. Spearman correlation coefficient was used to assess

correlations of cell percentages and densities among cell lineages. An

unsupervised hierarchical clustering was performed with Ward’s minimum

variance method (“hclust” from “R”). All statistical calculations were per-

formed by R software, version 3.5.2 (www.r-project.org). P< 0.05 was

considered statistically significant.
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Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-
positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer,
118(6), 1726–1737.

Means, C., Clayburgh, D. R., Maloney, L., Sauer, D., Taylor, M. H., Shindo, M. L., et al.
(2019). Tumor immune microenvironment characteristics of papillary thyroid carci-
noma are associated with histopathological aggressiveness and BRAF mutation status.
Head & Neck, 1–11. https://doi.org/10.1002/hed.25740.

Palucka, A. K., & Coussens, L. M. (2016). The basis of oncoimmunology. Cell, 164(6),
1233–1247.

Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society: Series B:
Methodological, 39(2), 172–192.

19High-dimensional multiplexed immunohistochemical characterization

ARTICLE IN PRESS

http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0010
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0010
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0010
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0015
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0015
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0015
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0025
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0025
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0025
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0030
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0030
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0030
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0030
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0035
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0035
https://doi.org/10.1158/2159-8274.CD-10-0028
https://doi.org/10.1158/2159-8274.CD-10-0028
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0045
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0045
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0050
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0050
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0050
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0055
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0055
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0055
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0055
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0060
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0060
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0060
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0060
https://doi.org/10.1002/hed.25740
https://doi.org/10.1002/hed.25740
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0070
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0070
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0075
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0075


Rischin, D., Harrington, K. J., Greil, R., Soulieres, D., Tahara, M., Castro, G. D., et al.
(2019). Protocol-specified final analysis of the phase 3 KEYNOTE-048 trial of
pembrolizumab (pembro) as first-line therapy for recurrent/metastatic head and neck
squamous cell carcinoma (R/M HNSCC). Journal of Clinical Oncology, 37(15_suppl),
6000. https://doi.org/10.1200/JCO.2019.37.15_suppl.6000.

Ruffell, B., & Coussens, L. M. (2015). Macrophages and therapeutic resistance in cancer.
Cancer Cell, 27(4), 462–472. https://doi.org/10.1016/j.ccell.2015.02.015.

Ruifrok, A. C., & Johnston, D. A. (2001). Quantification of histochemical staining by color
deconvolution. Analytical and Quantitative Cytology and Histology, 23(4), 291–299.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 Years
of image analysis. Nature Methods, 9(7), 671–675.

Sennepin, A. D., Charpentier, S., Normand, T., Sarr�e, C., Legrand, A., & Mollet, L. M.
(2009). Multiple reprobing of Western blots after inactivation of peroxidase activity
by its substrate, hydrogen peroxide. Analytical Biochemistry, 393(1), 129–131.

Stack, E. C., Wang, C., Roman, K. A., & Hoyt, C. C. (2014). Multiplexed immunohisto-
chemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal
amplification, multispectral imaging and multiplex analysis. Methods, 70(1), 46–58.

Strand, E. K., Robinson, A. P., & Bunting, S. C. (2007). Spatial patterns on the sagebrush
steppe/Western juniper ecotone. Plant Ecology, 190(2), 159–173.

Tsujikawa, T., Kumar, S., Borkar, R.N., Azimi, V., Thibault, G., Chang, Y.H., et al. (2017).
Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-
immune complexity associated with poor prognosis. Cell Reports, 19(1), 203–217.

Tu, J.-F., Ding, Y.-H., Ying, X.-H., Wu, F.-Z., Zhou, X.-M., Zhang, D.-K., et al. (2016).
Regulatory T cells, especially ICOS+ FOXP3+ regulatory T cells, are increased in the
hepatocellular carcinoma microenvironment and predict reduced survival. Scientific
Reports, 6, 35056.

20 Grace Banik et al.

ARTICLE IN PRESS

https://doi.org/10.1200/JCO.2019.37.15_suppl.6000
https://doi.org/10.1200/JCO.2019.37.15_suppl.6000
https://doi.org/10.1016/j.ccell.2015.02.015
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0085
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0085
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0090
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0090
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0095
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0095
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0095
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0095
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0100
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0100
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0100
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0105
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0105
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0110
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0110
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0110
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0115
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0115
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0115
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0115
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0115
http://refhub.elsevier.com/S0076-6879(19)30209-5/rf0115

	High-dimensional multiplexed immunohistochemical characterization of immune contexture in human cancers
	Introduction
	Results
	Sequential IHC based on heat-mediated and chemical stripping enables highly multiplexed imaging in one FFPE tissue s ...
	mIHC images are quantitatively evaluated by image cytometry analysis with preserved tissue-context information
	29-biomarker mIHC analysis of primary and recurrent HNSCC reveals profound differences in immune cell complexities
	Longitudinal immunospatial profiling reveals differential spatial pattern of tumor-immune cell distribution in prima ...

	Discussion
	Material and methods
	Clinical samples
	Sequential immunohistochemistry and image acquisition
	Image processing and analysis
	Statistics

	Acknowledgments
	References




