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Abstract—Brain–computer interfaces (BCIs) promise to provide
a novel access channel for assistive technologies, including augmen-
tative and alternative communication (AAC) systems, to people
with severe speech and physical impairments (SSPI). Research on
the subject has been accelerating significantly in the last decade
and the research community took great strides toward making
BCI-AAC a practical reality to individuals with SSPI. Neverthe-
less, the end goal has still not been reached and there is much
work to be done to produce real-world-worthy systems that can be
comfortably, conveniently, and reliably used by individuals with
SSPI with help from their families and care givers who will need
to maintain, setup, and debug the systems at home. This paper
reviews reports in the BCI field that aim at AAC as the application
domain with a consideration on both technical and clinical aspects.

Index Terms—Augmentative and Alternative Communication
(AAC), brain–computer interface (BCI), electroencephalography
(EEG).

I. INTRODUCTION

BRAIN–COMPUTER INTERFACE (BCI) is now consid-
ered a possible access method for communication by in-

dividuals with severe speech and physical impairments (SSPI)
who cannot meet their expressive language needs through nat-
ural speech, handwriting, or typing. BCIs interpret brain ac-
tivity directly, bypassing physical movement and relying on
neurophysiologic signals as an access method [164]. BCI for
communication falls into a class of assistive technology (AT)
and is placed with other augmentative and alternative commu-
nication (AAC) devices as an access means for language ex-
pression [66], [168]. Historically, AAC devices with different
interfaces (i.e., mouse, joystick, binary switches, head control,
or eye gaze) have offered individuals means to generate and
speak messages, when speech and writing are no longer func-
tional [16]. A number of recent developments in AAC access
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strategies for people with minimal movement have been pro-
posed that involve tracking of head and eye movement, recog-
nition of residual speech, and of gestures. BCI is one recent
development that relies on monitoring the electrical activity
of the brain [47]. Together, these strategies should provide even
greater access to face-to-face and electronic communication op-
tions to support engagement for health management and social
interactions [131] for people with SSPI.

As with any AT for communication, BCI translational re-
search and development can be discussed in regards to five
components [51]:

1) the input modalities for the device [for this paper, we limit
our discussion to electroencephalography (EEG)];

2) the processing demands of the device (here we refer to the
signal detection and classification options);

3) language representation (for BCI, this refers to the graphi-
cal user interface (GUI) for language presentation and the
manipulation of language units by the device);

4) the output modalities (for BCI, this is usually text output,
though speech output is a possibility);

5) the functional gains of the device (here we refer to the
target populations and the clinical demands they bring to
the task of BCI use).

The long-term objective of BCI translational research is to
find a reliable means to enhance communication and control so
that individuals with the most severe disabilities have a means
to participate in daily life for health, employment, social inter-
action, and community involvement.

Critical to any discussion of BCI for communication is the
concept of the user-centered design. Based on the needs and
preferences of the target population who will use this technol-
ogy for verbal engagement, we must evaluate functionality, sat-
isfaction, and expected outcomes of the users. We must consider
the homes and environments where BCI will be implemented
and the involvement required of the care providers and family
members who will be operating the systems. The time for set
up, the demands for technical assistance, and the ease of prob-
lem solving for this new technology must be considered with
the users. These factors will ultimately be the true measures of
success [85]. Even though BCIs are shown to achieve certain
level of success in laboratory environments, we must caution
that BCI is not a practical, dependable application for AT at
this time. The sophisticated operations of the technology and
the challenges of the target population are huge; obstacles to
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Fig. 1. BCI system flowchart. Note that this figure in general represents a
processing flowchart for Human Computer Interface (HCI) systems, and BCI is
a special case of HCI.

functional use have not yet been solved for independent im-
plementation in users’ homes. Expert end users have told us
that our challenge is to design a BCI that is safe, reliable, and
that restores function at near normal levels [63]. Despite the
benefits that AAC technologies offer people with disabilities, the
potential of independent communication has not been fully re-
alized for a group of individuals who present with such severe
physical impairments that they cannot reliably or consistently
control devices through available access methods. BCI is the
hopeful, though not yet practical, solution for them.

In this paper, we report on noninvasive EEG-based BCI
systems used as AAC devices, and we will review the dif-
ferent components of BCI for communication from the AT
perspective.

II. OVERVIEW OF BCI COMPONENTS

The typical components of a noninvasive BCI system and
their interactions are shown in Fig. 1: 1) stimulus presen-
tation paradigm (e.g., auditory, visual, tactile, etc.); 2) sig-
nal acquisition (EEG data or other modalities such as eye
tracker, etc.); 3) preprocessing (signal filtering, artifact re-
moval, etc.), 4) dimensionality reduction; 5) EEG evidence (fea-
ture extraction); 6) contextual evidence (e.g., language model
or word completion); 7) joint inference (system decision by
classification).

A. Input Modalities to the BCI

EEG-based BCIs have become increasingly popular due to
their portability, cost-effectiveness, high temporal resolution,
and demonstrated reliability in laboratory environments. In the
following sections, we will categorize noninvasive BCI systems
for expressive communication based on the first component
(stimulus presentation paradigms) of the flowchart and analyze
the rest of the components for these systems in more detail.

A number of physiological signals have been used in nonin-
vasive BCI to detect user intent. Most popularly, BCI systems
have exploited the following potentials.

1) Auditory and visual event related potentials (A-ERP/V-
ERP): As a response to infrequent novel/target stimuli,

the brain generates a P300 response, a positive deflection
in centro-parietal scalp voltage with a typical latency just
over 300 ms [148] and other accompanying waves. This
natural novelty detection or target matching response of
the brain allows designers to detect user intent from EEG
signals, using either auditory or visual stimuli to elicit this
response.

2) Volitional cortical potentials (VCP): Volitional synchro-
nization and desynchronization of cortical electrical ac-
tivity have been utilized in numerous BCI systems that
control external devices, including, cursors, avatars, and
robotic agents to perform simple activities of daily living,
as well as to control typing interfaces for communication.

3) Steady-state evoked potentials (SSEP): Fluctuating au-
ditory or flickering visual stimuli (following periodic
or other structured patterns) will elicit steady-state au-
ditory/visual evoked potentials (SSAEP/SSVEP) in the
auditory and visual cortex areas, respectively. Focusing
auditory or visual attention on one of several such stim-
uli causes temporally matching electrical oscillations in
the cortex. Time-frequency features can be analyzed to
identify with high accuracy which stimulus the attention
is placed on.

1) Event-Related Potentials: In their pioneering work, Far-
well and Donchin illustrate the feasibility of P300 as a control
signal for BCI-based communication [48]. In this study, the sub-
jects view a 6 × 6 matrix (matrix speller) consisting of letters
in the English alphabet, numbers from 1 to 9 and a space sym-
bol (see Fig. 2). Since the publication of this study, extensive
research has focused on various configurations or algorithms
designed to improve the speed and the accuracy of communi-
cation with the matrix speller, as well as other audio, visual,
and tactile stimulus presentation techniques for eliciting P300
responses. In the following sections, we will first review these
stimulus presentation techniques and then the signal processing
and inference techniques used.

a) Visuospatial presentation techniques: Existing visuospatial
presentation techniques can be categorized under the following
heading.

b) Matrix presentation: The Matrix Speller generally uses
an R × C matrix of symbols with R rows and C columns (see
Fig. 2(a) depicts a 6 × 6 symbol matrix with the second column
highlighted with the intention of inducing an ERP if the target
letter is in this column). To generate an oddball paradigm, tradi-
tionally each row and column (and in modern versions each one
of alternatively designed subsets of symbols) are intensified in
a pseudorandom fashion, while the participants count the num-
ber of highlighted rows or columns (or, in general, subsets) that
include the desired symbol. Usually a sequence is defined as the
intensification of all the rows and columns in the matrix. The
highlighting of the row and column containing the target symbol
are rare events, and will induce a P300 response. The objective
of the BCI system is to detect these deviations to identify the
target letter to enable typing.

EEG signals suffer from a low signal-to-noise ratio; there-
fore, to achieve a desired accuracy level, matrix speller systems
require multiple presentation sequences before a decision can
be made. For example, using bootstrapping and averaging the
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Fig. 2. Different visuospatial stimulus presentation techniques: (a) matrix
speller, (b) rapid serial visual presentation, and (c) Hex-o-Spell.

trials in different sequences, it was demonstrated that the matrix
speller can achieve 7.8 characters/min with 80% communication
accuracy [43]. This speed and accuracy may not satisfactorily
meet the needs of the target population. Therefore, various sig-
nal processing and machine learning techniques have been pro-
posed to develop ERP-based matrix speller systems with higher
speed and accuracy [17], [27], [35], [37]–[39], [70], [77], [78],
[81], [82], [91], [102], [118], [123], [124], [127], [129], [138],
[139], [142], [144], [150]. Following the BCI system flowchart
provided in Fig. 1, we will review these systems in terms of
preprocessing, dimensionality reduction, classification, and use
of context information.

The matrix speller was shown to be highly accurate in overt
attention mode, but in covert attention mode its performance
degrades significantly [153]. To overcome such performance
drops, BCI researchers have proposed gaze-independent stimu-

lus presentation techniques, such as rapid serial visual presen-
tation and balanced-tree visual presentation.

c) Rapid serial visual presentation (RSVP): RSVP is a tech-
nique in which stimuli are presented one at a time at a fixed
location on the screen [as depicted in Fig. 2(b)], at a rapid rate
and in a pseudorandom order. When the target is presented (a
rare event since there is one target symbol in the entire alpha-
bet) and observed by the user, ERP containing the P300 wave
is generated in EEG as a consequence of the target matching
process that takes place in the brain. Consequently, BCI sys-
tems can be designed to detect these responses for typing. By
utilizing temporal separation of symbols in the alphabet instead
of spatial separation as in the matrix speller, RSVP aims to be
less dependent on gaze control [2], [3], [114]–[116].

RSVP-based BCIs that use only EEG evidence may be slower
than matrix spellers, as the binary tree that leads to symbol se-
lections in a matrix speller could exploit the opportunity to
highlight multiple symbols at a time to reduce expected bits
to select a symbol (determined by entropy), while RSVP must
follow a right-sided binary tree, which is highly structured and
could lead to larger expected bits per symbol. RSVP-based typ-
ing has been demonstrated to achieve up to 5 characters/min by
Berlin BCI and RSVP Keyboard groups [2], [3], [115], [116].
Color cues and language models have been used in an attempt
to improve typing speeds with RSVP [2], [115]. On the positive
side, RSVP is potentially feasible even for completely locked-in
users, who may have difficulty with gaze control. RSVP BCIs,
such as the RSVP Keyboard [115] and Center Speller [154]
have similar signal processing and machine learning demands
as matrix presentation-based BCIs.

d) Balanced-tree visual presentation paradigms: Balanced-
tree visual presentation refers to a technique in which visual
stimuli are distributed into multiple presentation groups with
equal numbers of elements. A variation would have been dis-
tributing elements into groups balanced in probability accord-
ing to a Huffman tree based on a language model [128], but
we have not encountered this approach in the BCI literature.
In Berlin BCI’s Hex-o-Spell, a set of symbols is distributed
among multiple presentation groups; for example, 30 symbols
may be distributed among 6 circles each containing 5 symbols,
as shown in Fig. 2(c). Every presentation group is highlighted
in a random fashion to induce an ERP for the selection of the
group that contains the desired symbol. After the initial selec-
tion, the symbols in the selected presentation group are dis-
tributed individually to different presentation groups, typically
with one empty group which represents a command to move
back to the first presentation stage. At this point, the individ-
ual symbols are highlighted to elicit an ERP for selection of
the desired symbol within the selected group [154], [155]. In
Geospell, 12 groups of 6 symbols are arranged in a circular
fashion similar to Hex-o-Spell presentation [10], [133]; and in
another study these 12 groups are presented to a user in an RSVP
manner in a random order to be employed in an ERP-based BCI
speller [93]. In these systems, the 12 groups represent all the
possible rows and columns of the 6 × 6 matrix speller such that
the intersection of the selected row and column gives the desired
symbol.



34 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 7, 2014

e) Other visual presentation paradigms: The visual presenta-
tion paradigms explained above do not exhaustively cover all the
possible presentation techniques that could be (and have been)
used in an ERP-based BCI system for communication. Various
alternatives have been proposed and tested for limited communi-
cation. Here, we categorize systems that vary in their vocabulary
extent from a few icons all the way down to binary (yes/no) com-
munication as limited communication systems. Examples are as
follows.

1) Icon-based limited communication—for example a) sys-
tems for appliance or gadget control in which icons are
flashing in sequences of random order one at a time [64],
[14], and b) a system for expressing basic needs and emo-
tions by answering yes/no questions [23]. RSVP icon-
Messenger (unpublished at the time of submission) is a
variation of RSVP Keyboardthat uses limited-vocabulary
icon representations (based on Rupal Patel’s iconCHAT
system).

2) Cursor control—for example, a system in which four flash-
ing stimuli map to movements of the cursor to one of the
four directions (up, down, left, right) [98]–[100], [120].
Exogenous-icon (four arrows or four icons flashing on the
sides of the screen) and endogenous-letter (letters repre-
senting directions) paradigms were tested on users with
ALS, revealing that the endogenous paradigm provides
better performance for a gaze-independent BCI [100].
Qualitatively, results were similar when the signal pro-
cessing approach was improved [99].

3) Web browser—-for example, a) the Virtual Keyboard (Ro-
BIK) project, which employs a matrix-speller paradigm to
provide the user with different tags which are mapped to
elements of the web browser [170]; and b) a system that
employs a matrix speller paradigm to allow complete key-
board and mouse control to navigate through web browser
options [23], [24].

f) Auditory presentation techniques: A-ERP signals have re-
cently drawn attention for BCI design as an alternative or sup-
plement to visual presentation methods due to their applicability
in the population of users with impaired vision. Most A-ERP-
based BCIs employ a sequential stimulus arrangement. In these
arrangements, there exists a single stream of stimuli, and users
are expected to attend to the targets in the stream. Examples of
stimulation methods include various combinations of tones for
target and nontarget stimuli [58], [59], [178], utilization of cues
with different pitch [61], [71], [171], [179], utilization of differ-
ent sounds (bell, bass, ring, thud, chord, buzz) [80], and pronun-
ciation of the stimuli [8]. These techniques induce ERPs when
the target stimulus is perceived. Some groups also add direction-
ality to the cues to improve discriminability or to utilize it as
an additional stimulation method [61], [71], [171], [178], [179].
In most A-ERP-based BCIs, auditory presentation is utilized as
a potential supplement for visual presentation and audio-visual
presentations are done jointly. Accompanying the visual cue
with an auditory one resulted in increased P300 amplitude and
detection accuracy compared to only visual correspondence.
Systems relying only on auditory stimulation performed signif-
icantly worse than visual BCIs [59], [171]. Although they are

currently less accurate than visual BCIs, auditory BCIs are an
important alternative for people who are unable to use visual
BCIs.

g) Tactile presentation techniques: For users who cannot con-
trol their eye gaze or who have visual and/or hearing impair-
ments, a tactile presentation technique could be used as an al-
ternative to visuospatial and auditory presentation methods in
BCI speller design [29]. One tactile speller interface assigns a
set of symbols to each of the six fingers, with six symbols in
each set [158]. Symbols are selected in a two-stage process, as
in the balanced tree presentation techniques described above.
The user first selects a symbol set by focusing on a specific
finger. The six letters in the selected set are then assigned to
the six fingers, and the user again focuses on a specific fin-
ger to select the desired symbol. A BCI system that employs
this tactile presentation technique was shown to demonstrate a
typing accuracy performance similar to matrix and Hex-o-Spell
presentation techniques.

2) Volitional Cortical Potentials: Starting with motor
imagery-induced synchronization and desynchronization of cor-
tical potentials, BCI designs quickly started exploiting the abil-
ity of the brain to learn new skills, including the volitional
control of time–frequency characteristics of cortical poten-
tials [174]–[177]. Consequently, among all designs, BCIs based
on these synchronization and desynchronization effects of vo-
litional user brain activity can benefit most from user training.
In fact, it has been observed that subjects may achieve some
level of proficiency in highly variable durations, from a few
hours of practice to tens of hours or more [103]. It has also been
noted that individual characteristics may be influential factors
in the ability to generate mu rhythms (see below) [125]. By
training and reinforcement, users can improve their skills and
accordingly system performance. The following VCP have been
exploited to design BCI systems for communication.

1) Slow cortical potentials (SCP) are gradual changes in the
EEG voltage. These fluctuations can last from hundreds
of milliseconds to several seconds. Movement-related po-
tentials (MRP) are instances of SCPs; some include P300
and N400 in this category as well [62], [86], [109], [110].

2) Mu rhythms (also known as comb, wicket, or sensorimo-
tor rhythms), are 8–13 Hz synchronized patterns found
primarily over the motor cortex in brain regions that con-
trol voluntary movements. The mu pattern is suppressed
when a motor action is performed or even thought about.
This phenomenon is an example of event-related desyn-
chronization (ERD). Alpha rhythm, a signal with similar
frequency range, but observed primarily over the visual
areas of the brain while eyes are closed and the brain is
at rest, is not to be confused with mu rhythm in the BCI
design [107], [111].

3) Beta rhythms, occurring in the frequency range 12–30 Hz,
are typically considered in three subbands: low beta (12–
16 Hz), beta (16–20 Hz), and high beta (20–30 Hz). These
waves are suppressed over the motor cortex when there is
a muscle contraction prior to and during movement. Beta
energy is increased when movement has to be resisted or
voluntarily suppressed [107], [111].
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VCP-based BCIs typically require long user training ses-
sions [62], [86], [109]–[111]. The thought translation device
(TTD) [86] is an example of this type of system. The TTD
utilizes SCP, which are known to be producible in every sub-
ject, unlike EEG rhythmic components. Although improvements
in classification algorithms [62] and determination of mental
strategies for more effective control of VCP [110], [111] have
enhanced performance, long training sessions are still neces-
sary. Some researchers, including the Berlin BCI group, have
shifted the burden of adaptation more toward the machine-
learning algorithm to compensate for extensive user training
requirements [24], [25], [106], [107].

a) Balanced-tree visual presentation: Hex-o-Spell, discussed
above as a visual presentation technique for ERP-based BCI
spellers, is also used in VCP-based systems. As in the ERP
version of Hex-o-Spell, a total of 30 symbols are distributed
equally in 6 groups arranged in a circular fashion around the
center of the screen, as shown in Fig. 2(c). The VCP version
includes an arrow in the center of the circle. The user controls the
movement of the arrow using motor imagery (such as imagined
movements of the right or left hand), with the aim of directing the
arrow toward the circle which contains the desired symbol. Once
a circle is selected (e.g., using foot motor imagery), its contents
are distributed to six circles and a second-level selection is made
in a similar fashion for selection of the desired symbol [24],
[25], [106], [107]. Like Hex-o-Spell, TTD employs a balanced-
tree visual approach for stimuli presentation and selection. In
TTD, the symbol set is first split into two halves. The user, by
generating a shift in SCP, selects the half which includes the
desired stimulus. Upon this selection, the chosen half is further
split into two halves, and this procedure continues until the two
halves include only single symbols and the final selection can be
made [19]–[21]. TTD’s presentation approach is very similar to
the binary tree-presentation technique employed in [86], [110].
In another balanced-tree presentation setup, 27 symbols (26
English letters and a space symbol) are separated into three
blocks, each associated with a mental task [41], [105]. The user
selects the desired symbol by imagining these mental tasks in
a multistage selection scheme similar to the other balanced-tree
presentation techniques.

b) Other presentation techniques: Serial visual presentation
is another presentation paradigm used in VCP-based BCI, in
which each symbol is presented on a predefined location of the
screen for a limited duration; for example, on the bottom or top
of the screen. In this setup, the user typically attempts to select
the intended symbol by moving a cursor toward the presented
symbols using motor imagery [62], [109].

In some VCP-based BCIs, the cursor control presentation
paradigm is employed to train the users. For example, in TTD,
cursor (or ball) movement toward an indicated target is used as
the goal and cursor location or another type of visual (such as
a smiley face) or auditory sign is presented as feedback [62],
[86], [109]–[111]. In this setup, the user has the option of either
moving the cursor toward a target or keeping it in the center of
the screen.

3) Steady-StateEvoked Potentials: SSEP-based interfaces
include those that use auditory and visual stimulation intended to

evoke responses by flickering lights or fluctuating auditory stim-
uli (such as click trains, tone pulses, or amplitude-modulated
sounds). Several SSVEP-based typing interfaces have been de-
veloped, beginning with Sutter [146], [147], who uses phase
shifted m-sequences to flicker each symbol on a matrix key-
board layout. Spuler et al [144] investigate a similar design
using phase shifted 63-length m-sequences as stimuli to enable
typing on a 32-symbol matrix keyboard. Hwang et al. [67] have
a 30-symbol matrix keyboard layout, where each symbol has
a dedicated flickering LED with a unique frequency (between
5–10 Hz, separated by frequency gaps on the order of 0.1 Hz).
Cheng et al. [36] utilize a phone key layout for digits and intro-
duce a few additional buttons, all flickering at different frequen-
cies. Yin et al. [167] use simultaneously flashing (to elicit ERPs)
and different flickering frequencies for a matrix layout keyboard
with 36 symbols. Cecotti [34] uses a hierarchical balanced-tree
approach and breaks the alphabet of 29 symbols into a three-
level tree with three branches at each (nonleaf) node. With this,
they have three boxes that contain symbols and two additional
stimuli that represent delete and repeat commands, leading to
five flickering frequencies. On the other hand, Bremen BCI uses
a 1-g letter probability-based keyboard layout. The user navi-
gates a cursor on it by attending visually to one of four flickering
arrows and selects the intended letter when ready using a fifth
flickering stimulus in the corner [6], [54], [145], [160]–[162].

In systems using SSAEP, which have been investigated only in
recent years, dichotic fluctuating auditory stimuli are presented
using speakers or earphones. Specifically, in the streaming stim-
ulus arrangement, the stimuli are presented at the same time
as multiple streams and distinguished by detecting the stream
the user is attending to [76]. To improve the effectiveness of
dichotic presentation, an amplitude modulation on the stream
can be induced [61]. Hohne et al. [171] combine streaming
and sequential stimulus arrangements by considering sequential
pitch-based cues applied to left, right, or both ears and utilizing
a combination of SSAEP and A-ERP evidence to determine user
intent.

B. Signal Processing and Inference in BCI for Communication

The signal processing and inference techniques used for BCI-
based communication systems can be used with little or no
modification for other applications of BCI. However, this par-
ticular application also presents some customization opportuni-
ties to be exploited by designers of BCI-based communication
systems.

1) Preprocessing and Dimension Reduction for EEG Evi-
dence Extraction: EEG signals acquired as a response to pre-
sented stimuli are not only noisy, with very low signal-to-noise
ratio, but also have nonstationarities due to various factors such
as physiological or environmental artifacts, sensor failure, and
subject fatigue. To design an effective inference method for
BCI, it is essential that the most salient EEG signal features
are extracted as evidence. Preprocessing and dimension reduc-
tion are steps aimed at such feature extraction. In ERP-based
BCIs the P300, in VCP mu rhythms, and in SSVEP occipi-
tal rhythms are of primary interest and statistical preprocessing
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spatiotemporal filters with priors that favor these components
can be designed. In all designs, the removal of dc drift (the
baseline fluctuations due to frequencies � 1 Hz) and possibly
artifact-related high-frequency components in EEG are partially
achieved with a properly designed bandpass filter. This initial
bandpass filtering is a common step in all BCI systems. It is
recommended that linear-phase FIR (finite impulse response)
filters be used to prevent phase-response-induced distortions to
waves and rhythms, as well as to make accounting for group de-
lay easy for downstream operations in the signal processing and
inference pipeline. In particular, for visually evoked potentials
the group delay of the bandpass filter must be considered when
aligning (unfiltered) event markers to filtered EEG. This also
means that for real-time operation the bandpass filter group de-
lay should be kept as small as possible (considering the tradeoff
between having a high quality magnitude response for desired
and undesired frequencies and the delay introduced to the in-
ference process and the close-loop control dynamics; the latter
consideration is relevant in robotic agent control applications).

After the initial bandpass filtering, time-windowed data from
different EEG channels is usually concatenated to obtain the
EEG feature vector. Based on the sampling frequency and the
number of channels used, this vector could have a high di-
mensionality. Several methods are employed, before or after
concatenation as suitable, for feature dimension reduction and
further noise and artifact reduction: grand average over all tri-
als [23], [38], [43], [74], downsampling [17], [43], [64], [69],
[123], [124], [154], [155], [158], discrete/continuous wavelet
transform [27], [39], [43], feature selection by stepwise linear
discriminant analysis (see Section II-A2) [82], decimation by
moving average filtering [37], [38], [81], [82], [102], [129],
[150], channel selection [35], [81], [82], [123], [124], arti-
fact removal through independent component analysis (ICA)
[8], [98]–[100], [120], [138], [166], enhancing P300 response
by adaptive spatial filtering including common spatial pattern
(CSP) and xDAWN algorithm [35], [39], [126], [127], [139], and
dimensionality reduction through principal component analysis
(PCA) [115], [150]. For SSVEP-based designs two main infer-
ence techniques emerge: if flickering stimuli are discriminated
by frequency, then the sum of powers at the first two or three
harmonics of candidate frequencies are obtained from a power
spectrum estimate [34], [36], [67], [167]; if the flickering stim-
uli are discriminated by pseudorandom code phase shifts (or
with different codes), canonical correlation analysis (acting like
a matched filter) is employed [143], [144]. In the following,
we describe the most common preprocessing methods in more
detail.

a) Downsampling: From each EEG channel, after band-
pass filtering, discrete signals x [n], n = 1, ..., N are obtained
through the discretization of the continuous signal xc (nTs)
with Ts = 1/fs as the sampling period and fs as the sampling
frequency. To detect a possible change in EEG, usually a time-
windowed portion of the EEG signal time-locked to the presen-
tation of each stimulus is extracted. Then, based on the sampling
frequency, a high dimensional data vector is obtained from each
channel. A very common way to decrease the dimensionality is
downsampling, i.e., xd [n] = x [nM ] where M is the reduction

factor. M is chosen to prevent aliasing, based on the cut-off
frequency fcof the bandpass filter such that fcM/fs ≤ 1/2.

b) Moving average filtering: An alternative or additional
dimensionality reduction technique to downsampling is mov-
ing average filtering. For every channel, the signal, x [n] , n =
1, ..., N , is partitioned into equal non-overlapping segments of,
for example, length K (usually N/K is an integer), such that
the ith segment is x [(i − 1) K + n] for n = 1, ...,K. Then,
decimation is obtained by taking the average of each segment,
ending up with N/K data points to represent the data.

c) Independent component analysis: Assuming that the mea-
sured EEG data are a linear combination (mixture) of signals
of interest, artifacts, noise, and other brain activity irrelevant
to the task, blind source separation techniques such as ICA
are used to separate sources of interest from other contributing
signals [99], [120], [126], [138], [166]. Assuming statistical in-
dependence between mixed sources, ICA tackles the problem
of source separation on the basis of optimizing an objective
function that is appropriate even with limited assumptions on
source statistics, including non-Gaussianity, nonwhiteness, or
nonstationarity [119]. Statistical properties of separated source
estimates commonly used in objectives include kurtosis (the
fourth-order cumulant), negentropy (the difference between the
differential entropy of a multivariate Gaussian random vari-
able that has the same covariance as the source estimate vector
and the differential entropy of the source estimate vector), mu-
tual information, maximum likelihood fit under the parametric
density-mixing model (with Infomax providing one possible
realization) [40].

d) Channel selection: Another common way to decrease the
dimensionality of the EEG data is to choose which EEG chan-
nels to use in the BCI setup. Using a limited number of sensors
has other practical benefits, such as reduced preparation time,
which is an important consideration for in-home use of BCI sys-
tems. One common way to choose the set of channels to retain
is to use channels previously shown in the literature to exhibit
event detection. For example, in addition to the Fz, Cz, and Pz
locations of the International 10–20 system, posterior sites and
occipital regions are shown to improve BCI performance for
ERP/P300 detection [17], [82]. Rather than using preselected
sets of channels in BCI systems to consider possible perfor-
mance changes across different users, adaptive channel selec-
tion methods have also been developed. Recursive [123], [124]
and backward–forward [35] channel selection methods that op-
timize typing accuracy, and a channel-selection method based
on maximizing the mutual information between class labels and
channel features [88], [46], [139], are shown to improve BCI
performance.

e) Common spatial patterns (CSP): CSP is a commonly used
spatial filtering method that attempts to exploit the high spatial
correlations in extracting common underlying responses for a
trial in the BCI presentation paradigm. Obtained by determin-
ing the linear projection that maximizes signal-to-noise power
ratio, CSP leads to an explicit generalized eigenvalue type so-
lution that can be easily obtained. For a two-class classification
problem, by maximizing the variance of one class while min-
imizing the variance of the other, CSP calculates the direction
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for maximum discriminability. More mathematically, in a bi-
nary classification problem, let the recorded EEG signal for the
kth trial be Xk (an Nc × Nt matrix where Nc is the number
of channels and Nt is the number of temporal samples follow-
ing stimulus/cue onset), and define index sets I1 and I0 , where
k ∈ I1 or I0 if kth trial belongs to class C1 or C0 . Then, for
c ∈ {0, 1} the class-conditional sample covariance estimates are

Sc =
∑

k∈Ic

XkXT
k

trace
(
XkXT

k

) (1)

and the CSP filter coefficients W are calculated by solving

maxW trace
(
WT S1W

)
subject to WT (S1 + S0)W = I.

(2)
By equating the gradient of the Lagrangian for this equality

constrained optimization problem to zero and solving for the
parameters, it is found that generalized eigenvectors of the ma-
trix pair (pencil) (S1 ,S1 + S0) are candidates in this first-order
analysis. Relating the generalized eigenvalues to the objective
being optimized reveals that projection vectors can be selected
by sorting according the eigenvalues and selecting the vectors
accordingly.

f) xDAWN algorithm: This algorithm specifically aims to pro-
vide an unsupervised spatiotemporal filter design method to
project raw EEG on the estimated ERP (P300) subspace by
maximizing the signal-to-signal-plus-noise ratio (SSNR) such
that the evoked potentials are enhanced by the applied projection
[see (3)] [35], [126], [127]. Let the number of sensors be denoted
with Ns , the total number of temporal samples with Nt , and the
number of temporal samples corresponding to an ERP with Ne

(which is typically chosen to extend over 600 ms to 1 s long
post-stimulus intervals—a longer than necessary interval, in our
opinion, for pure P300 response, possibly with the purpose of
capturing potentially useful motor activity in the brain in case
the user engages in motor responses for each target stimulus).
Assume that the target stimuli elicit P300 evoked potentials and
the measurement model are written as X = DA + N, where
X is an Nt × Ns matrix, A is an Ne × Ns matrix of ERP sig-
nals, D is an Nt × Ne Toeplitz matrix (first column elements
all null, but Dτk ,1 = 1 with τk as the stimulus onset time of the
kth stimulus (1 ≤ k ≤ K), with K denoting the total number of
target stimuli), and N is an Nt × Ns noise matrix (other brain
and artifact activity). A = A1 + A2 is assumed to contain a re-
sponse common to all ERPs, A1 and a random spatiotemporal
pattern A2 . Then, the aim of the algorithm is to estimate spatial
filter U, an Ns × Nf matrix, with Nf denoting the number of
spatial filters, by solving the optimization problem

U = argmaxV SSNR (V)

= argmaxV
trace

(
VTAT

1 DTDA1V
)

trace (VTXTXV)
(3)

after which the filtered signals are obtained by X̂ = XU.
g) Principal component analysis: The dimension of EEG ev-

idence (feature) vectors obtained upon concatenation of data
from each channel can be reduced using PCA, which projects
the feature vectors to the subspace spanned by the largest eigen-

vectors of the feature covariance matrix in order to preserve
high power (since EEG is made zero-mean by bandpass filter-
ing) bands. Note that PCA applied to time-delay vectors acts
as energy-selective FIR bandpass filters. Eigenvectors corre-
sponding to eigenvalues smaller than a predefined threshold are
discarded in this process. It should be noted that PCA may be
used for regularization purposes with care as described, but it
should not be used with the intent of finding the discriminant
projections in general.

2) Classification: The purpose of the classifier in ERP-based
systems is to detect the existence of ERP (especially P300) in
the EEG response following each stimulus (e.g., intensification
of rows/columns/subsets in the matrix speller, presentation of
letters/symbols in the RSVP paradigm, or finger tapping events
in a tactile stimulation paradigm). In SSVEP/SSAEP-based sys-
tems, the classifier uses temporal or frequency domain features
to detect which stimulus the user is attending to (e.g., flick-
ering arrows or textures on the screen for SSVEP/codeVEP or
tones/clips in SSAEP paradigms). In VCP, the classifier attempts
to identify which imagery-induced brain rhythm is prominent
in EEG, especially over motor cortical areas for motor imagery
paradigms, using spatiotemporal filtering and feature extrac-
tion. We will survey the most commonly used classification ap-
proaches, which include 1) linear discriminant analysis (LDA)-
based classifiers [e.g., Fisher LDA (FLDA), Stepwise LDA
(SWLDA), and Bayesian LDA] (BLDA [17], [23], [27], [35],
[43], [55], [59], [64], [69], [71], [80]–[82], [84], [93], [102],
[111], [127], [129], [133], [142], [144], [154], [155], [167], and
2) support-vector machine (SVM) [8], [37]–[39], [70], [81],
[91], [98]–[100], [124], [123], [150]. Other classifiers for the
BCI system include genetic algorithms [99], logistic linear re-
gression [61], [158], neural networks [41], [105], [120], matched
filters [138], Pearson’s correlation method [81], and regularized
discriminant analysis (RDA) and its special cases [2], [3], [26],
[115], [116], [171].

In addition, unsupervised and semisupervised methods in-
cluding those that assume hierarchical Gaussian distribution
models for EEG [78], [77], that are based on cotraining of
FLDA and BLDA [95], and that are based on offline learning of
the ERP classifier from EEG using data from a pool of subjects
followed by online adaptation for different individuals [118]
have also been employed. Semisupervised classifier adaptation
promises to reduce calibration data collection duration and pos-
sibly adaptability against nonstationarities in EEG during the
test phase.

A BCI system’s performance depends not only on the choice
of classifier, but also on preprocessing methods, selected fea-
tures, the users who participate in the study, and a multi-
tude of other factors [94]. Therefore, a comparison among
different studies to choose the “best” classifier for a BCI
speller system is not feasible. However, within individual stud-
ies, comparisons among classifiers have been attempted. For
example, using offline EEG data, it was demonstrated that
SWLDA and FLDA provided better overall classification per-
formance compared to Pearson’s correlation method, linear
SVM, and Gaussian Kernel SVM [81], a matched filter-based
classifier outperformed a maximum likelihood-based classifier
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[138], and BLDA outperformed LDA, SWLDA and neural net-
works [97].

a) LDA-based classifiers: LDA is a supervised method for
classification. For two classes C0 and C1 consider samples
(EEG features) given in the form X = {xt , rt} such that rt = 1
if xtεC1 and rt = 0 if xtεC0 . LDA finds the vector w that
maximizes some measure of class separation for projected data.
A typical approach is to maximize Fisher’s discriminant [7]

J (w) =
(m1 − m0)2

s2
1 + s2

0
. (4)

Here, m1 = wT (
∑

t x
trt) / (

∑
t rt) = wT μ1 and m0 =

wT (
∑

t x
t(1 − rt)) / (

∑
t (1 − rt)) = wT μ0 with μ1 and μ0

denoting the class-conditional mean vectors of features from C1
and C0 , respectively. Also, s2

1 =
∑

t(w
Txt − m1)2rt and s2

0 =∑
t(w

Txt − m0)2 (1 − rt) indicate the class-conditional vari-
ances of projected samples from C1 and C0 . Noticing that and
(m1 − m0)2 = wTSBw and s2

1 + s2
0 = wTSWw, with SW =

S1 + S0 where S1 and S0 denote the class-conditional covari-
ances of the feature vectors and SB = (μ1 − μ0) (μ1 − μ0)

T ,
the optimal FLDA projection vector is found as the generalized
eigenvector of the matrix pencil (SW ,SB) corresponding to the
largest generalized eigenvalue. After some simplifications, the
resulting vector is wFLDA = S−1

W (μ1 − μ0) [7]. The discrimi-
nant score is then simply

wTx + w0 (5)

where w0 is a threshold, and it specifies a hyperplane classi-
fication boundary along with w. Note that the FLDA solution
is minimum-risk optimal under the assumption of equal covari-
ance Gaussian class distributions, which is typically reasonable
for EEG if one assumes EEG is a superposition of background
brain activity and stimulus/event-related brain activity with a
wide-sense stationary Gaussian background process model; and
it is also a special case of linear regression [22].

In (5), x is the feature vector and w is the vector of feature
weights. In P300 matrix speller applications, to combine mul-
tiple trials in a sequence (see Section II-A for the definition of
a sequence for matrix spellers), it is assumed that the user is
focusing on a single symbol during a sequence, and this symbol
is inferred by the intersection of the predicted row and the pre-
dicted column. Denoting with Tir ow and Tic o l the index sets of
the trials (row and column highlights) where the ith symbol is
highlighted, the following equations are used to obtain predicted
row and column indices:

Predicted Row = argmax
ir ow

∑

t∈Ti r ow

wTxt

Predicted Column = argmax
ic o l

∑

t∈Ti c o l

wTxt . (6)

SWLDA [44] is an extension of LDA to choose the feature
values to be used in (5). The significant features are chosen using
a combination of forward and backward stepwise regression.
SWLDA has an inherent automatic feature selection property
and is commonly used in P300-based BCI systems and other
BCI designs. SWLDA consists of two loops: one for forward
selection and one for backward elimination (see Algorithm 1).

In BLDA [64], to design a separating hyperplane as shown
in (5), a prior distribution is assumed for the weight vector
w. Then, a predictive feature distribution is obtained using the
posterior distribution of the weight vector, and this predictive
distribution is used to make an inference on the stimuli/options.
The targets trt for rt ∈ {0, 1} and feature vectors xt are as-
sumed to be linearly related in the presence of additive white
Gaussian noise n, such that

tc = wTx + n. (7)

Here, t1 = N1/N for C1 and t0 = −N0/N for C0 with N0and
N1 denoting the number of calibration samples corresponding
to C0 and C1 , respectively, and N = N0 + N1 .

Using (7) and considering all feature vectors for both classes,
the conditional distribution of the targets, p(tc |w,X, θ), with
θ denoting the noise distribution parameters vector, can be cal-
culated, where X = {xt , rt} is defined as above. In addition,
assuming a prior distribution for the weight vector w,p(w|α),
with α denoting the weight prior parameters, the posterior distri-
bution for the weight vector w is computed using Bayes’ rule as

p(w|tc ,X, θ, α) ∝= p(tc |w,X, θ)p(w|α). (8)

Usually, the prior distribution for w is chosen as the conjugate
prior to the assumed noise model such that p(w|tc ,X, θ, α) has
a closed-form solution. Then, a predictive distribution for the
target variable for a new input x̂ can be calculated as in (9)
for inference on the class label r corresponding to this new
input [64]:

p(t̂|x̂,X, θ, α) =
∫

w
p(t̂|w, x̂, θ)p(w|tc ,X, θ, α)dw. (9)

b) Support-vector machine: SVM classifiers provide the opti-
mum separating hyperplane in feature space (linear SVM) or in
the transformed feature space (kernel SVM) by not only putting
a constraint that the separated features are on different sides
of the hyperplane (similar to LDA), but also maximizing the
distance between the features closest to the hyperplane and the
separating hyperplane (this distance is called the margin). In
the event of nonseparable classes, the misclassified samples are
penalized by their distance to the boundary (see (11)).

For two classes C1 and C−1 (changing label values), given
labeled samples (EEG features) X = {xt , rt} such that rt = 1
if xtεC1 and rt = −1 if xtεC−1 , the solution to the following
problem provides the optimal separating hyperplane in SVM:

min
w

1
2
w2

2 subject to rt
(
wTxt + w0

)
≥ 1 − ξt (10)

where ξt ≥ 0 are slack variables storing variation from the mar-
gin. The Lagrangian for this optimization problem can be written
as

L =
1
2
w2

2 + C
∑

t

ξt −
∑

t

αt
[
rt

(
wTxt + w0

)
− 1 + ξt

]

−
∑

t

μtξt (11)

where αt and μt are the Lagrange multipliers, and C is the
complexity parameter penalizing the boundary violations by
nonseparable points. This is a quadratic convex optimization



AKCAKAYA et al.: NONINVASIVE BRAIN–COMPUTER INTERFACES FOR AUGMENTATIVE AND ALTERNATIVE COMMUNICATION 39

problem that should be minimized with respect to w and w0 and
maximized with respect to αt and μt . The solution is obtained
by maximizing the dual problem in terms of αt , and then set-
ting w =

∑
t αtrtxt . By calculating g (x) = wTx + w0 , one

decides on C1 if g (x) > 0 and C−1 otherwise. This classifier is
commonly referred to as linear SVM.

Kernel SVM is a generalization such that the feature vec-
tors are first transformed z = φ (x) from a finite dimensional
space to possibly an infinite dimensional space through ba-
sis functions, then using w =

∑
t αtrtzt =

∑
t αtrtφ (xt), the

discriminant is

g (x)=wTφ (x)=
∑

t

αtrtφT (
xt

)
φ (x) =

∑

t

αtrtK
(
xt ,x

)

(12)
where the kernel function K (xt ,x) = φT (xt) φ (x) is the in-
ner product of the basis function vectors. Different kernel func-
tions are used to design SVM classifiers, most popularly Gaus-
sian kernel or higher order polynomials.

The presence of artifacts, sensor failure, or other effects such
as BCI user fatigue cause nonstationarity in EEG signals. These
nonstationarities change the underlying distribution of the EEG
data; therefore, a classifier designed based on a training dataset
may not always work with the predicted accuracy or speed. To
overcome such issues two SVM-based classifiers are proposed.

An ensemble of SVMs is proposed to classify EEG data
[123], [124]. In this method, the training data are separated
into multiple parts, and for each part a separate linear SVM is
trained. The score for each row/column is then calculated as the
summation of the scores of the ensemble of SVMs. The authors
show that with fewer sequence repetitions they achieve similar
results compared to an LDA-based classifier tested on the same
dataset [27].

A self-training SVM is proposed to deal with nonstationari-
ties of the EEG data [91]. A linear SVM is first designed using
the training dataset. Then during the testing phase of the BCI
system, each decision made by the classifier is assumed as cor-
rectly labeled EEG data. Then, using these new labeled data,
the SVM classifier is retrained. It was shown that for a desired
communication accuracy, this method significantly reduces the
training session length.

c) Regularized discriminant analysis: RDA is a supervised
quadratic classification algorithm [52] that assumes multivari-
ate normal distributions as the class-conditional distributions.
To alleviate the rank deficiency of the maximum likelihood esti-
mates of class-conditional covariance matrices due to the curse
of dimensionality caused by low number of samples in cali-
brations, shrinkage, and regularization operations are applied,
respectively, as

Σr (λ) =
(1 − λ)Sr + λS
(1 − λ)Nr + λN

,

Σr (λ, γ) = (1 − γ)Σr (λ) +
γ

p
trace [Σr (λ)] I (13)

where λ and γ are hyperparameters that need to be optimized,
for instance, using cross validation. Shrinkage operation makes
the class covariances closer to an overall covariance matrix

(suitable for EEG assuming equal covariances for classes for
reasons explained in the LDA section) and regularization makes
them more circular and primarily, nonsingular.

C. Factors that Affect Speller Performance

1) Odd-Ball Effect: The standard presentation setup in ma-
trix spellers consists of a 6 × 6 matrix with rows or columns
intensified one at a time. As mentioned above, a sequence in-
cludes (6 + 6 = ) 12 flashes when all the rows and columns
are intensified. The 6 × 6 matrix structure presents 36 symbols,
including the 26 English letters and 10 more choices, which can
contain digits or other choices like delete or space. With the
assumption of one target item in each sequence, there are only 2
flashes containing the desired symbol; and hence the probability
of oddball paradigm is 2/12 ≈ 0.17. This probability is suffi-
ciently low for generating a P300 response [48]. Many criteria
have been considered to increase the ERP detectability.

2) Intersymbol Interval (ISI): ISI [including a related mea-
sure, target to target interval (TTI)] is one of the most effec-
tive factors to be studied. Short intervals between target flashes
would result in repetition blindness (attention blink) and ha-
bituation, which decrease ERP amplitude and hence its de-
tectability. Many papers have studied this factor along with
other parameters like matrix size [4], [135] or different pre-
sentation paradigms [49], [60], [68], [69], [151], [152]. In the
matrix speller, the optimal ISI varies depending on the matrix
size and presentation paradigm; for example, [135] reported the
best performance with an ISI of 175 ms for a 3 × 3 matrix and
row/column paradigm (RCP), and [101] showed that lower flash
rates in the range of 8 to 32 Hz result in the best performance
for an 8 × 9 matrix with flashes of 6 items at a time. They also
demonstrated that variation in stimulus-on and stimulus-off time
does not affect the performance.

Matrix spellers are typically set up to avoid the possibility of
consecutive target flashes. Similarly, in the RSVP paradigm, one
would avoid consecutive presentations of the same symbol for
the same reason. Lu and colleagues studied BCI performance
as a function of stimulus-off time, ISI, flash duration, and flash
rate as 4 timing parameters [172]. They suggested that BCI
accuracy is a function of the number of trial repetitions, and
BCI performance is enhanced when stimulus-off time and ISI
are increased. These studies suggest that optimal ISI depends on
the number of nontarget flashes between targets. Jin et al. [69]
studied the effect of TTI on BCI performance. They employed
a 7 × 12 matrix of characters with 16, 18, and 21 flashes in each
sequence, with a flash pattern optimized to minimize TTI while
avoiding repetition blindness. To avoid repetition blindness a
minimum of one (for 16 flashes), two (for 18 flashes), and three
(for 21 flashes) non-similar symbol presentations between two
flashes of the same item has been proposed. Here, the 18-flash
pattern showed the best performance in terms of classification
accuracy and information transfer rate.

3) Different Matrix and Stimuli/Flash Organizations: The
unpredictability of the target letter and the physical arrangement
of items on the presentation screen are other factors which can
affect ERP amplitude. Changing the size of a matrix will alter the
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location of items on the screen, as well as the number of items
displayed, resulting in changes to the probability of the target
item [135]. Increasing matrix size decreases the probability of
the target letter and hence enhances the ERP’s SNR. However,
the required time for highlighting all the columns and rows will
increase, so this does not necessarily lead to improved typing
speed [4]. Smaller matrix sizes flashing with shorter ISI seem
to yield better typing speeds in a typical RCP [135]. Remodel-
ing the flash paradigm from an RCP to a group-based paradigm
is another phenomenon that has been analyzed. In the matrix
speller, a non-row/column subset-based flash paradigm is stud-
ied on a 12 × 7 matrix [68]. Subsets are selected such that each
sequence contains 9, 12, 14, or 16 flashes. The 16-flash paradigm
shows better performance than the other subset-based options
and RCP. Townsend and colleagues proposed the checkerboard
paradigm (CBP) to avoid adjacency distraction error [151]. This
paradigm is a special case of the previous flash paradigm in
which subsets of symbols in an 8 × 9 matrix are flashed by
alternatingly selecting a row or column from one of two 6 × 6
matrices of symbols, forming a checkerboard pattern for each
flashing subset. CBP demonstrates a significant improvement in
accuracy compared to RCP. Another flash paradigm known as
C(m,n) is introduced in which m is the number of flashes per
sequence and n is the number of flashes per item [152]. Specif-
ically, the C(36,5) known as the five-flash paradigm (FFP) has
been compared against CBP. Both have high accuracy, but the
FFP offered a higher information transfer rate.

To consider an error correction code approach, Hill and col-
leagues assume a noisy communication channel and assign a
code word to each item with a length equal to the number of
flashes in each sequence [60]. Code words are all zeros except
for a single one at times corresponding flashes. Extra flashes
are employed to generate redundancy and the codebook is opti-
mized to have a maximal–minimum Hamming distance between
pairs of codes. The TTI is constrained to be larger than a thresh-
old. Results indicate that RCP demonstrates better performance
than one would expect according to its Hamming distance and
TTI. Moreover, the optimal stimulus type is a subject-specific
parameter. Imposing transparent familiar or well-known faces
(like those of family members) on matrix elements is another
method which can lead to increased SNR [72], [73].

Reshaping the fixed matrix arrangement of items into various
forms has been another strategy for matrix spellers. One pro-
posed method is the hierarchical region-based flash paradigm
[49]. In this setup, 49 items equally distributed in seven groups
are positioned in different regions of the screen. At the first
level, each region would intensify one by one. Then, the let-
ters in the (inferred) intended region would be distributed at
seven locations on the screen and the user can proceed by mak-
ing further selections to reach the intended item. In a similar
paradigm, one can use a language model to decide on the hierar-
chy of characters to be used in the presentation layout [96]. The
lateral single-character paradigm (LSCP) is another proposed
technique in which items are arranged in a circular layout on
the screen [121]. Only one item would flash at a time and two
consecutive flashes cannot be from the same side (left or right)
to reduce cross-talk from nontarget flashes.

4) Gaze Dependence: The P300 matrix speller is a gaze-
control dependent design [31]. Hence, users with limited gaze
control will experience significant difficulty. To address this, a
new presentation paradigm called the gaze independent block
speller (GIBS) has been proposed to reduce the dependence
on gaze control [122]. Here, 36 items are distributed into four
groups, one block at the center of the screen and three blocks at
three corners. Central block items flash one by one, and other
blocks flash as a group. If the intended character is in another
block, the user should aim for that block and if selected, that
block will move to the center. Results indicate that without eye
movements (fixating at the center) this system offers a bit ratio
similar to the standard RCP. In contrast, for SSVEP stimuli,
selective attention to a flicker pattern even with overlapping
stimuli groups may provide sufficiently discriminative signals
for BCI [173]. In a similar observation for auditory BCIs, Hohne
and colleagues observed that discriminating different pitches
was easier than discriminating direction of arrival [171].

5) Feature Attention: This corresponds to the attention of a
BCI user to different properties of the presented stimuli, and has
been shown to affect BCI performance. The original ERP-based
Hex-o-Spell has been compared to its variants, Cake Speller and
Center Speller, which feature different colors and forms for the
visual stimuli. Cake Speller is similar to Hex-o-Spell in terms
of design except that the symbol groups are located in triangles
rather than circles, and these triangular groups form a hexagon.
In Center Speller, symbol groups are presented within various
shapes of various colors in the center of the screen, in RSVP
fashion [154]. The results showed that the Center Speller has
higher P300 response and higher classification accuracy. In the
matrix speller, a green/blue color change during highlighting
was shown to be superior to white/gray color change [149]. A
visual stimuli scheme based on color change and movement of
the stimuli has been employed in a matrix speller design. This
scheme induces P300 and motion onset visual evoked potential,
and was shown to outperform a scheme based only on color or
motion [69]. In RSVP-based BCIs, assigning colors or differ-
ent capitalization to the cues led to an increase in the spelling
rate [2].

6) Error-Related Potentials (ErrPs): ErrPs are EEG poten-
tials induced by the user’s recognition of an error. These po-
tentials are detectable in the anterior cingulate cortex over
the fronto-central regions of the scalp when the decided
action shown on the interface is not the user’s intended
symbol [37], [38]. Detection of ErrPs in EEG, and their in-
tegration into P300-based intent classifiers by error correction
after P300 detection, can improve the accuracy and speed of
BCI systems [14], [143], [144].

7) Context Information: Context information refers to ev-
idence from non-EEG-sources that complement EEG data in
inference. Word completion and use of language models are
well-known examples. BCI communication systems specifically
designed for typing benefit greatly from probabilistic language
models. Various predictive word completion methods inte-
grated into the intent detection process [75], [90], [129] and
Bayesian fusion methods that combine probabilistic n-gram lan-
guage models with different classifiers, as in RSVP Keyboard
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[114]–[116] and other systems [130], [142], [157], have been
demonstrated to enhance the accuracy and speed of communi-
cation.

D. Output Components

BCI communication systems have three options for output:
text, text-to-speech, and speech. The output option most often
referred to in the noninvasive BCI literature is text, but off-the-
shelf text-to-speech modules can be appended with relative ease.
The widely researched P300 Speller [134] that is also used by
the BCI2000 system has been validated for text output tasks like
spelling, email, or internet browsing [79], [84], [137]. Text-to-
speech requires a speech synthesizer for conversion of normal
language text into artificial verbal production; such synthesizers
are available on virtually all modern personal computers. To
employ this output method, the user must simply enable this
feature on his or her computer and have a way to interface with
it. Various groups report people with advanced amyotrophic
lateral sclerosis (ALS) effectively using BCI-controlled text-to-
speech applications in their daily lives [137]. The option of direct
speech output has been investigated by a group working with an
invasive BCI; initial results indicate the potential to use speech
motor imagery to produce vowel sounds, and the researchers’
eventual goal is to develop a BCI capable of producing synthetic
speech in real time [30], [57].

Although excellent advances have been made since P300
and SSVEP BCIs for communication were introduced in late
80 s [48], [146], [147], researchers agree that slow information
transfer rates continue to plague the technology [104]. Even
so, the field remains hopeful about emerging communication
applications [50].

III. CURRENT CLINICAL APPLICATIONS OF BCI FOR

COMMUNICATION

When considering the clinical application of BCI for com-
munication, individuals with SSPI are an obvious target popu-
lation. BCI technology has the potential to profoundly change
their lives by providing an alternative access method in the ab-
sence of reliable motor movement or when other forms of AAC
have failed [112], [137], [164]. Indeed, individuals with SSPI
are typically unable to use common modes of communication
such as speech, writing, or gestures to express themselves.

A. Etiology

Among people with SSPI, communication is a particular chal-
lenge for individuals with locked-in syndrome (LIS). LIS is a
condition combining tetraplegia and anarthria with preserved
consciousness [13]. There are numerous etiologies of LIS, rang-
ing from acute events such as brainstem stroke and severe trau-
matic brain injury to postinfectious autoimmune disorders such
as Guillain–Barre syndrome to chronic degenerative disease
such as ALS [17], [19], [63], [84], [87], [104]. LIS has been
described in terms of three levels of severity [13], [141]. People
with classical LIS are completely paralyzed except for blink-
ing or eye movements, which they can use to communicate via

yes/no responses or partner-assisted communication methods,
or to control a speech-generating device [89], [156]. Those with
incomplete LIS have additional motor function, and may have
other options for gestural communication or alternative access
to a speech-generating device [89], [156]. However, even these
methods may not be reliable due to fatigue or variability in mo-
tor function [141]. Total LIS refers to a condition in which all
voluntary motor function is lost; BCI offers the only hope of reli-
able communication for this population. Some BCI researchers
have begun to include participants with LIS who may have more
motor function than is typically associated with incomplete LIS,
but who cannot consistently rely on speech, writing, or existing
AAC methods to meet their communication needs. In addition
to the etiologies listed previously, these forms of incomplete LIS
may result from acquired neurological conditions or neurode-
velopmental disorders including cerebral palsy (CP), muscular
dystrophy (MD), multiple sclerosis (MS), Parkinson’s disease,
Parkinson’s plus syndromes, and brain tumors. This expanded
definition of incomplete LIS offers a more inclusive perspective
of the multiple diagnoses in which SSPIs necessitate BCI access
for communication [47], [113].

B. Value of BCI for People With SSPI

The age of onset of LIS varies between 17 and 52 years
old [15], [32], [33], [42]. The youngest patients have a better
prognosis for survival, and more than 85% of individuals are
still living ten years after onset [33], [42]. Additionally, with
advances in medical technology, life expectancy with severe
physical impairment has potential to be significantly longer.
This is seen with the application of both noninvasive and in-
vasive ventilation in ALS [28]. The availability of BCI as a
potential form of AT to enable communication throughout dis-
ease progression holds great promise for improving quality of
life in this population [12], [47], [63].

How are BCIs valuable for communication for people with
SSPI? First, the larger perspective of purposes of communica-
tion for all humans must be considered. In 1988, an extensive
review of the existing literature on AAC interactions resulted
in a standard definition of the four purposes of communication:
1) expression of needs/wants; 2) information transfer; 3) social
closeness; and 4) social etiquette [92]. One study questioned a
large group of people with ALS regarding areas of potential AT
use. They placed the highest priority on communication [56].
Indeed, communication has been one of the first applications of
BCIs [48], [86], [164].

For those users with total LIS, the very real and immediate
goal of a BCI speller is to provide basic communication capabil-
ities in order to express wants and needs to caregivers or to op-
erate simple word processing programs [9]. Beyond expression
of basic wants and needs, use of BCI to communicate messages
of the user’s choice, to share information regarding opinions
and interests, can be accomplished through free spelling in text
output. Finally, to achieve the purposes of social closeness and
to allow optimal life and activity participation, BCI should pro-
vide access to the internet, email, social networking, and other
ways of interacting with the world for people with LIS.
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C. Communication Competence With BCI

In terms of the future, most researchers agree that the potential
for BCI will only be capitalized upon when BCIs are not used
in isolation, but rather are part of a suite of AT devices to be
used by people with varying degrees of physical ability [66].

Greg Bieker, a man who has lived with LIS for 18 years,
predicts that BCI has the potential to give people with SSPI a
sense of control and the ability to communicate independently
with an unobtrusive and easy device [18]. With this new AAC
technology, we must ask ourselves, who would be considered a
competent BCI communicator? The concept of communication
competence has been divided into four different constructs [92].

1) Operational competence refers to the ability to perform
the tasks required of the technology.

2) Linguistic competence refers to the user’s ability to ma-
nipulate language and generate messages that conform to
the linguistic rules of the community.

3) Social relational competence addresses the user’s under-
standing of why and how to engage verbally with others.

4) Strategic competence refers to the user’s ability to know
what means of communication to use in different settings,
with different partners and a range of messages.

If a BCI user is to be considered competent with this new
AT, he or she must perform adequately in all four areas. The
interaction between the user’s skills and the technology’s func-
tionality for independent message transmission is the ultimate
goal of communication competence with BCI.

D. User Skills Necessary for BCI Operation

As with any communication technology, the skills needed for
operation and functional use must be determined, and a compre-
hensive process is needed to match the device to the user [132].
Fried-Oken and colleagues conducted a careful and repeated
clinical task analysis of the RSVP Keyboard BCI by a multidis-
ciplinary team [169]. Additionally, they observed people both
with and without disabilities as they used the system and deter-
mined the following skills as requisite for successful use of a
visual ERP-based BCI: adequate hearing and auditory compre-
hension for responding appropriately to stimuli, understanding
and following instructions; adequate vision, visual perception
and sustained visual attention for seeing letters on the screen
and attending to the task; and adequate literacy and spelling
skills for recognizing letters and words and composing written
messages. Vigilance and working memory are necessary for the
user to sustain attention to the task as well as to track symbol se-
lections. Potential interference from pain and medications must
be identified, and motor function should be assessed for unin-
tentional muscle movements or suboptimal positioning which
may affect EEG signal acquisition.

BCI research has primarily taken place in laboratory envi-
ronments, with setup performed by BCI experts. These tightly
controlled conditions bear little similarity to the conditions un-
der which BCI systems will ultimately be used. People with
disabilities must use BCIs for communication and control in
the home environment, where there are frequent distractions,
signals are influenced by interference from other equipment,

and family members and paid caregivers with varying levels
of technical skills are responsible for system setup and main-
tenance [136], [159]. In recent years, researchers have begun
to bring EEG-based BCI communication systems to the homes
of people with disabilities for testing under these challenging
conditions [112], [113], [168]. Some BCIs have been placed in
users’ homes for evaluation of long-term independent use, most
notably the Wadsworth BCI Home System (BCI24/7). People
with disabilities have been using this P300-based system for
communication, computer access, and environmental control in
their homes over periods of months or years [137], [163]. These
studies indicate that independent home use of BCI is possible
and beneficial to the user, but presents considerable challenges
related to interference and other characteristics of the home
environment, training for users and caregivers, and technical
support [137], [159].

As BCI continues to improve and move toward indepen-
dent home use as an assistive technology, it is vital that re-
searchers and developers follow the principles of user-centered
design [1], [66], involving BCI users or potential users in all
steps of development. A number of research groups have be-
gun collecting feedback and suggestions from BCI users, us-
ing questionnaires and rating scales [168], interviews [168],
anecdotal reports [137], [151], telephone surveys [65], or focus
groups [23]. Current user feedback data suggest that people with
disabilities expect BCIs to be relatively quick and easy to set up
(30 min or less), have high selection accuracy (90% or better),
and type much more quickly than current systems (20 or more
letters per minute) [65]. Users also want multipurpose BCIs
that, in addition to communication, allow for computer access,
environmental controls, wheelchair operation, and other func-
tions [23], [65], [168]. Research participants expressed concern
about being able to use BCIs for functional communication in
the home environment due to personal factors such as fatigue
and discomfort, the appearance and complexity of the cap and
other hardware, or the burden for caregivers who must set up
and maintain the system [23], [168].

E. Future Technical Horizons

From a clinical perspective, BCIs for communication face
many of the same challenges as other AAC technologies, re-
flecting the user feedback described above. AAC in general
is much slower than natural speech, can be difficult to learn
and use, and requires adequate training for the user, communi-
cation partners, and caregivers [11], [53], [108]. Typing rates
for current EEG BCI-based communication systems hover near
5 characters per minute [66] or one 5-letter word per minute
(wpm). People without disabilities typically speak at a rate of
150–250 wpm (Goldman-Eisler 1986, as cited in [16]). BCI
may be even more difficult to learn than movement-based AAC
methods, as one must learn not only a new computer interface,
but also how to control brain activity. In some studies, people
with disabilities have been found to achieve lower levels of accu-
racy with BCI than people without disabilities [113], [117]. BCI
faces additional challenges with reliability and dependability;
even in laboratory-based studies under controlled conditions,
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BCIs have not demonstrated adequate reliability for functional
use [165]. The multiple hardware components involved in a
typical EEG-based BCI system can be difficult to transport or
to mount to the user’s wheelchair, reducing system portability
and usability in various environments. Finally, system setup is
more complex and time-consuming for noninvasive BCIs than
for most other AAC technologies, primarily due to the need for
electrode application and troubleshooting.

BCI can play a unique and important role in the field of as-
sistive technology, by serving as an access method for people
whose severe disabilities prevent them from consistently using
other methods such as eye control or switch scanning. Even
people with total LIS, who have no volitional muscle move-
ment whatsoever, may someday be able to communicate using
only their brain activity. At present, few studies have examined
BCI performance among individuals with total LIS, despite the
great need for a viable communication method in this popula-
tion. Kübler and Birbaumer [83] found that people with total
LIS were less likely to be successful with BCI than participants
with lower levels of disability. Even among users with mild or
no disabilities, many people are unable to successfully control
existing BCI systems due to individual variations in brain struc-
ture or function, such as the absence of a P300 response [5].
The pediatric population has also been largely overlooked in
BCI research. Some children with disabilities would certainly
benefit from using BCIs for communication and control, and
researchers should begin to investigate this possibility. Future
BCIs should be functional for users of varying ages and abil-
ities, including those with profound physical disabilities who
currently have no functional means of communication. Follow-
ing a user-centered design model, as described above, will help
to ensure that BCI systems meet the needs and desires of the
individuals who will use them in everyday life.

IV. CONCLUSION

BCI research is in the process of revolutionizing the future
of human–computer interaction with exponentially increasing
number of reported outcomes on many innovative and novel ap-
plication areas. In this review, we have restricted the discussion
to methodologies and outcomes of BCI research that have two
features:

1) Noninvasive EEG signals are used as the physiological
input modality.

2) AAC is the target application domain.
We omitted an extensive discussion on performance mea-

sures used, as information transfer rate (in bits/minute) is the
most widely used measure and is supplemented typically by
characters/minute. In the review, we avoided a discussion that
compares reported accuracy and speeds among various systems,
as we think uncontrolled factors among experiments conducted
across the globe still pose a great source of variance and mak-
ing hardline conclusions is difficult. Nevertheless, readers can
find reported speed and accuracy details in the cited sources and
make such a comparison if interested.

As evidenced by the citation distribution and relative lengths
of our sections, ERP-based AAC systems are most widely re-

Algorithm 1. Stepwise Linear Discriminant Analysis (SWLDA)

searched; especially in increasing numbers more recently. VCP-
based systems run into user-training difficulties and SSVEP-
based systems encounter significant issues related to lack of
gaze control in target user populations of AAC systems. Even
the widely researched ERP-based matrix speller has been shown
to be strongly gaze dependent and much effort went into devel-
oping variations that are less prone to performance degradation
due to this factor.
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The signal processing tends to be relatively simple, linear
classifiers are widely used, context information could have been
exploited in significantly greater amounts, and most importantly,
real-time artifact handling issues in EEG preprocessing for var-
ious populations of potential BCI-AAC system users need to
be addressed further. Also, signal models are almost completely
lacking in the literature which makes simulation-based engineer-
ing design followed by experimental validation with human-in-
the-loop testing infeasible for the most part. This is a significant
problem, because time donated for experiments by individuals
with SSPI is extremely valuable and extensive experimentation
for trial-and-error-based development and design is not feasible.

At this time, the most important issues that we think should
be addressed include:

1) training users to produce good EEG signals during BCI-
AAC system use;

2) improved signal processing to handle subject-specific con-
ditions that degrade signal quality and discriminability;

3) improved incorporation of context and language informa-
tion in designs;

4) developing accurate EEG signal models that can allow
simulation-based designs, which can then be validated
with experiments involving individuals with SSPI;

The research community has taken great strides towards mak-
ing BCI-AAC systems a practical reality for individuals with
SSPI in the past decades; however, there is still much work to
be done.
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[83] A. Kübler and N. Birbaumer, “Brain–computer interfaces and commu-
nication in paralysis: Extinction of goal directed thinking in completely
paralysed patients?” Clin. Neurophysiol., vol. 119, pp. 2658–2666, 2008.
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