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Abstract

Background—Some non-invasive brain computer interface (BCI) systems are currently

available for locked-in syndrome (LIS) but none have incorporated a statistical language model

during text generation.

Objective—To begin to address the communication needs of individuals with LIS using a non-

invasive BCI that involves Rapid Serial Visual Presentation (RSVP) of symbols and a unique

classifier with EEG and language model fusion.

Methods—The RSVP Keyboard™ was developed with several unique features. Individual letters

are presented at 2.5 per sec. Computer classification of letters as targets or non-targets based on

EEG is performed using machine learning that incorporates a language model for letter prediction

via Bayesian fusion enabling targets to be presented only 1–4 times. Nine participants with LIS

and nine healthy controls were enrolled. After screening, subjects first calibrated the system, and

then completed a series of balanced word generation mastery tasks that were designed with five

incremental levels of difficulty, that increased by selecting phrases for which the utility of the

language model decreased naturally.

Results—Six participants with LIS and nine controls completed the experiment. All LIS

participants successfully mastered spelling at level one and one subject achieved level five. Six of

nine control participants achieved level five.

Conclusions—Individuals who have incomplete LIS may benefit from an EEG-based BCI

system, which relies on EEG classification and a statistical language model. Steps to further

improve the system are discussed.

Corresponding author: Barry S. Oken, MD, Oregon Health & Science Univ. CR-120, 3181 SW Sam Jackson Park Road, Portland, OR
97239. oken@ohsu.edu telephone 503-494-8873.

NIH Public Access
Author Manuscript
Neurorehabil Neural Repair. Author manuscript; available in PMC 2014 May 01.

Published in final edited form as:
Neurorehabil Neural Repair. 2014 May ; 28(4): 387–394. doi:10.1177/1545968313516867.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Introduction

Locked-In Syndrome (LIS) consists of tetraplegia and anarthria with preserved

consciousness, with three levels of severity. Classical LIS describes individuals whose

voluntary movement is limited to blinking and vertical eye movements. Incomplete LIS

refers to individuals who demonstrate voluntary movement other than blinking or eye

movement, and total LIS to those without any voluntary muscle function whatsoever.1, 2 LIS

etiologies include brainstem stroke, traumatic brain injury, and neurodegenerative conditions

such as advanced amyotrophic lateral sclerosis.3 Incomplete LIS can be defined functionally

as a condition where individuals cannot consistently rely on oral motor speech or upper

extremity function to meet environmental control or communication needs. In addition to the

above etiologies, these disabilities may also result from cerebral palsy, muscular dystrophy,

multiple sclerosis, Parkinson's disease, Parkinson's plus syndromes, and brain tumors. This

significantly increases the number of individuals who fit within a definition of LIS and can

benefit from brain computer interface (BCI), and offers a broad perspective of their

functional status for rehabilitation and medical management.

Ischemic strokes are the most common cause of classical LIS which has a prevalence of 1-2

per million.4 Incomplete LIS which includes additional diagnoses has an uncertain but

significantly greater prevalence. The usual age of onset of LIS varies between 17 and 52

years old.5-7. The youngest patients have a better prognosis for survival, with more than

85% of individuals still living ten years after onset.5, 6 With advances in medical

technology, life expectancy will likely increase.

Expressive communication (both speech and writing) is a significant challenge for

individuals with LIS. People with classical LIS rely on blinking or eye movements to

communicate via yes/no responses or partner-assisted communication methods, or to control

a speech-generating device.3, 8, 9 Individuals who present with incomplete LIS may have

additional options for gestural communication or alternative access to a speech-generating

device.10, 11 However, even these methods may not be reliable due to fatigue or variability

in motor function2 and those with degenerative conditions may transition to total LIS and

lose the ability to communicate even through blinking or eye movements.12 Current efforts

in assistive technology have resulted in new access methods for people with severe

neuromuscular impairments.13, 14 BCI is a promising option for people with LIS.

BCI uses brain signals to provide a non-motor communication channel for people with

severely limited motor control. Considerable research efforts are being invested into EEG

BCIs, both from non-invasive scalp recordings and from invasive electrocorticography for

both human and animal models.15 Among non-invasive EEG-based BCI options, the most

commonly used spelling interface is the BCI2000 with P300 speller.16, 17 The P300 response

has been shown to be a reliable signal for controlling a BCI for a number of functions,

including text generation.17 The P300 speller presents a grid of characters arranged in a 6 ×

6 matrix. Rows and columns randomly flash with the target cell represented by an

intersection occurring with a probability of 1/6. The rare brightening of the target stimulus

elicits a P30018 that is identified by the computer program and interpreted as a

‘keystroke’.19 A second spelling application is the Berlin BCI: Hex-o-spell.20, 21 In the usual
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configuration, a user focuses on six hexagonal fields surrounding a circle. In each of the

fields, five letters or other symbols are arranged. In order to select a symbol, the user

imagines directing a small arrow to their desired target. Successful imagination results in

that field being chosen. Then all other hexagons are cleared and the five symbols of the

selected hexagon are moved to a novel set of six individual hexagons. The user then

replicates the same procedure to select one symbol.20

The current non-invasive BCIs allow people with LIS to access letters for communication

and computer control. The current systems do not integrate a language model with signal

detection for letter selection although some systems have used predictive spelling after the

classifier has decided on the correct letter.22 Statistical language models assign probabilities

to text. High utility probabilistic language models can be estimated from a large sample of

text in any language by counting how often letters occur in particular contexts. They are

important components of many computer-based natural language applications, including

speech recognition, machine translation and optical character recognition. They are also

used to make text entry more efficient in word processors or text messaging in cell phones.

These same statistical language models are now frequently used to speed up text entry in

non-BCI communication devices for individuals with severe speech and language

disorders.23

This paper describes the development and implementation of the RSVP Keyboard™, the

first BCI device for people with LIS that tightly fuses a language model with an EEG

classifier for effective and efficient spelling and expressive communication.

Methods

Participants

Participants with LIS were recruited through the ALS Center of Oregon, the ALS

Association Oregon and SW Washington Chapter, and the outpatient Neurology and

Augmentative and Alternative Communication clinics at Oregon Health & Science

University (OHSU). Control participants included a convenience sample of people without

disabilities. Participants with LIS met the following inclusion criteria: (1) diagnosed by a

neurologist; (2) age between 18 and 75 years; (3) capable of participating in one- to three-

hour experimental interactions; (4) literate in English; (5) adequate vision and hearing; (6)

speech that is understood less than 25% of the time (as assessed by the referring speech-

language pathologist) or (7) severely reduced hand function for writing and/or typing; and

(8) willing to be videotaped for research purposes. Participants in the control group met

criteria 2 through 5. All participants completed the RSVP screening protocol that assessed

requisite skills for use of the RSVP Keyboard™.

The screening protocol addresses history and participant/caregiver perception of current

sensory abilities, performance on subtests from existing standardized assessment

instruments for auditory comprehension, reading, and spelling and on novel tasks developed

to screen sustained visual attention, working memory and ability to perceive stimuli in all

four visual quadrants.24, 25 The screening protocol only required minimal movement

responses and was completed by all participants with LIS.
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This study was approved by the Institutional Review Board at OHSU and all participants

provided informed consent. Participants with LIS authorized a relative or caregiver to sign

the consent forms on their behalf, via yes/no signals or other alternative means of

communication.

Procedure

The experimental sessions were performed at the residences of people with LIS and at

OHSU for the non-disabled group. EEG was recorded using a 16-channel g.USBamp (g.tec,

Graz, Austria) with active electrodes in a cap at approximate 10-20 locations. The reference

electrode was placed at TP10 and ground at FpZ. The raw EEG was grossly inspected for

signal quality. A 500 msec window of EEG following character presentation was used for

the signal analysis of the classifier reducing the detection problem into binary classification

problem to decide between target and non-target stimulus.26

Stimuli were presented in an RSVP (rapid serial visual presentation) paradigm.26 The

stimuli consisted of the 26 letters plus a “<” for delete prior character and “_” for spacebar

and had a visual angle of 3.8 degrees. Individual characters were presented singly at 2.5 per

sec and were on screen for 400 msec. The stimuli were presented on an 18” laptop computer

monitor positioned 75 cm away from the participants.

Participants first had a calibration session where the classifier was generated after seeing 75

sequences of the 28 characters. Prior to each sequence, the participants were briefly shown a

target letter or character they were instructed to detect.

Mastery task

After calibration of the RSVP Keyboard™, participants performed the mastery task. The

mastery task was designed to provide practice opportunities to improve user performance.

Varying levels of contribution from the language model (described in detail below) were

used to minimize errors and reduce frustration to encourage further practice. During the task,

participants were presented with a pre-selected set of balanced phrases27 one at a time, and

were asked to copy a target word from each phrase using the RSVP Keyboard™. They were

instructed to correct any errors by selecting the “<”. The 28 characters were presented in 2

blocks of 14, with a fixed pause of 1 sec between blocks and sequences. The letters were

chosen randomly with the constraint that all 28 characters were chosen in each sequence of

28. One to four sequences were presented for each character classifier decision. A classifier

decision, with input from the language model, was made after a sequence if the classifier

achieved a certain probability threshold. After classification, there was a decision screen

presented with the classifier character choice and a one second pause before going onto the

next character.

The program moved on to the next phrase when one of the following criteria was met: the

target word was copied correctly; the participant spent 10 minutes attempting to type the

same word; or the number of presented sequences exceeded eight times the number of letters

in the target word. Each of the five mastery task levels included three sets of three phrases.

A level was considered successfully completed if participants accurately generated a target

word for two of the three phrases in a set. If the participant did not successfully complete the
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first set on a level, she could attempt up to two more sets at that level. The mastery task

continued until the subject completed the fifth level, failed to pass a lower level, or opted to

end the session. Error rates were calculated using the Total Error Rate formula.28

The EEG was sampled at 256 Hz and 2.5 – 44 Hz bandpass filtered. Artifact contaminated

sequences were rejected if the average amplitude of any channel was higher than 40 μV and

the trial was repeated. The 500 msec samples from each channel following each character

presentation were further processed. A linear dimension reduction was applied using

Principal Component Analysis (PCA) to remove zero variance directions, essentially

equivalent to employing a bank of eigenfilters on EEG and downsampling their outputs to

obtain features. The directions with a variance lower than 10−5 of the maximum variance

were removed. The energy in the removed directions wasn't exactly zero, however it was

assumed to be negligible compared to higher energy components. The number of

dimensions was reduced to approximately 48 from 64 for each channel, where 64 time

samples correspond to half a second windowing after downsampling to 128 Hz. The total

number of features, i.e. dimensions, for each trial was approximately 800. Subsequently, for

each stimulus, the aggregate feature vector obtained from all the channels was further

projected into one-dimensional space using Regularized Discriminant Analysis (RDA)

classifier.29

The signal statistics required for PCA and RDA were learned during the calibration session

described above. Using the calibration data, RDA model was fit to data. The accuracy of the

classifier during calibration was estimated from the area under the curve (AUC) of true

positive versus false positive rate for the calibration target versus non-target classification,

under a 10-fold cross validation.

Character-based language models were trained on a large sample of New York Times text,

from the English Gigaword corpus, following described methods.30 Briefly, the probability

of each letter is conditioned on the previous five letters in the sentence. Using these models,

experimental stimuli were generated with specific levels of predictability, to provide

increasing levels of typing difficulty in the 5-stage mastery task. Low levels in the mastery

task are highly predictable given the previous symbols; higher levels include less predictable

words. Specifically, in level 1, each letter in the target word is at least 5 times more likely

than the next highest probability letter; level 2 target letters are at least 2 times more likely;

level 3 target letters are always the most likely; level 4 target letters are never most likely

but always at least half as probable as the most likely letter; and level 5 target letters are

between 0.3 and 0.5 times as probable as the most likely letter. While the first letter of a

word is usually less accurately predicted by language models than later letters of the word,

these particular words were chosen so that the language model worked comparably well for

the first as later letters of a word. Using the model, many possible stimuli fitting the mastery

criteria were found in the New York Times corpus, then hand-filtered for linguistic variety

and incorporated into natural-sounding phrases.

To improve character classification, evidence from the language model and from the EEG

are tightly combined. The score corresponding to each trial stimulus is obtained after the

EEG feature extraction step as a result of RDA. Based on the scores, relative likelihoods for
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the target and non-target class are estimated using kernel density estimation. A probabilistic

Bayesian fusion is made with the assumptions of conditional independence of EEG evidence

in each epoch from a prior epoch and from the language model evidence. A Naïve Bayesian

fusion is applied between the language model and EEG given the class label of each trial

being target or non-target. The fusion is done probabilistically. The probability of each

symbol being the intended one changes according to EEG evidence collected by new

repetitions of the sequences. As more EEG evidence is collected the effect of language

model becomes less prominent. Even a target letter with a probability of 0.0001 according to

the language model may be selected after collecting EEG evidence corresponding to

multiple sequences. After the probability is calculated, the symbol with maximum a

posteriori probability is selected by the system either once this probability exceeds a preset

confidence threshold or when a preset maximum allowed number of sequences is reached.26

Results

Participants

Demographic information for nine participants with LIS and nine healthy controls is

provided in Table 1. There were no significant differences between the two groups in terms

of age, gender, or years of education. One participant did not pass the cognitive screening,

either because of lack of consistent motor response or being in a minimally conscious state.

Two participants with LIS passed the screening but did not take the mastery task: one with

significant electrode problems and one because of hospitalization and move to new foster

home (this person achieved AUCs of 0.79 and 0.88 on two trials of calibration).

Mastery Task Performance

Table 2 presents results from the mastery task on the remaining six participants with LIS and

nine healthy controls. All participants completed at least the first level of the RSVP

Keyboard™ mastery task. The number of successful participants decreased at higher

mastery task levels. Higher AUC scores were required for success at higher mastery task

levels. Six of nine control participants completed all five mastery levels, compared to only

one of six participants with LIS.

On average, control participants had significantly higher maximum AUC scores than

participants with LIS (Mann-Whitney p = 0.045), and tended to reach higher levels in the

mastery task (p = 0.069). Although the number of sessions required to either complete level

five or fail to pass a level varied from subject to subject (due to time constraints, individual

performance, and/or fatigue), there was no significant difference between the two groups (p

= 0.414). These results are displayed in Table 3.

Several participants with LIS consistently achieved low AUC scores during calibration

attempts. Two of these participants, both with significant spasticity, demonstrated frequent,

uncontrolled movements of the facial and respiratory muscles that interfered with accurate

EEG signal acquisition.
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Discussion

For the first time, we have demonstrated the utility of fusion of an EEG classifier with a

statistical language model for spelling with a brain computer interface in participants with

LIS. Equipment organization, transport and protocols were streamlined to allow research

assistants to set up the RSVP Keyboard™ with ease in 45 minutes. The RSVP Keyboard™

quickly presents one large letter at a time on the screen for 400ms (or shorter), thus reducing

the visual perceptual demands compared to other more complicated BCI displays. Through

calibration and mastery tasks, EEG signals were recorded for up to 5 hours in participant's

homes. The mastery task is another unique feature that allows participants to utilize the BCI

to spell words with minimal errors due to the strong contribution of the language model to

the lower levels. This 5-level mastery exercise is suited for functional training of BCI use as

well as experimental manipulation.

Non-disabled participants performed better using the BCI system than those with LIS as has

been observed previously.31 Some with LIS demonstrated low AUC. It is possible that those

with LIS may have more difficulty with sustained attention but other potential confounds

have not been fully addressed with these small samples. Possible causes include

medications32, 33 and additional electronic equipment (two on ventilators). Five of the six

participants with LIS were taking at least one EEG-altering medication. However, one

subject with LIS achieved the highest AUC of all participants despite both being on a

ventilator and taking two different anti-depressants.

While the RSVP Keyboard™ is usable in a small subset of people with LIS in its current

form, there are limitations that will be addressed in future versions. Current artifact rejection

or minimization techniques in real time are not ideal. While independent component analysis

is frequently used to subtract eye blink artifact in off-line EEG analysis34, doing this in real

time is more difficult. Eye blinks need to be detected and not just subtracted so that ERPs to

stimuli presented during a blink are not used for classification. Active electrodes were used

that require less quality contact than the typical 5 Kohm impedance needed for passive EEG

electrode recordings. Electrode artifacts during mastery task or spelling are also a potential

problem because the calibration utilized all electrodes. Electrode locations do not need to be

exactly measured since the classifier can utilize any electrode location and the classifier is

partly unique to a subject and a recording session. It is reasonable to try to keep placement

as consistent across days as possible within a subject in order to significantly shorten the

calibration time for each session. There were occasional problems with 60 Hz sources in

peoples' homes.

For this study, all 28 possible characters were presented for each sequence for the classifier.

The unique integration of a statistical language model has allowed a newer developmental

version to present just a subset of the 28: the more likely characters. The current stimulus

rate of 2.5 Hz allowed novice users to learn the RSVP paradigm, but those familiar with the

task have been able to go faster than 5 Hz. We are currently exploring the feasibility of the 5

Hz presentation rate in subjects with LIS. The language model is currently using a standard

corpus based on written English but this will possibly be improved with other corpora and
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with individualization of language model based on participants' prior text-based

communication using email or other communication devices.

Characters per minute was fairly low as with all BCI systems. It is of interest that the correct

characters per minute is not markedly different than those reported in other systems with

very different letter presentation strategies. It would be useful in the future to design

experiments to directly compare peformances using different presentation strategies with

and without fused language models. For this experiment, no direct comparison with another

system was performed.

There were participant issues related to having significant neurological dysfunction. Two

participants had uncontrolled movements making useful EEG recording unreliable. This

might be overcome with much improved subject specific artifact detection and minimization

procedures. It was occasionally difficult to physically position the participants with LIS to

comfortably maintain gaze at the laptop computer monitor. Participants did fatigue from the

task, both those with LIS and healthy controls. It should be feasible to integrate some

physiological markers of decreased alertness or vigilance35 into the system and then take

breaks or stimulate participants in other ways to increase alertness.

This BCI RSVP Keyboard™ has fused an EEG classifier with a statistical language

prediction model in real-time for the first time in people with incomplete LIS allowing for

spelling with only 1-4 target letter presentations. The plan is to continue to refine the

methodology to speed up the spelling rate and to allow its use for people who are completely

locked-in.
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Table 1
Demographic information on 9 participants with LIS and 9 healthy controls

LIS CONTROLS p value

Age, mean (range) 45.8 (27-65) 45.2 (17-66) 0.965a

Gender (M/F) 7/2 4/5 0.147b

Ethnicity (%Caucasian) 77.8 100 0.134b

Years of education (range) 14.6 (12-23) 18.2 (11-22) 0.067a

First language English (n) 8 9 0.303b

Level of familiarity with computer(some/expert) 4/5 2/7 0.317b

Type of LIS (n)

 Incomplete 6

 Classical 2

 Total 1

Years since LIS onset 14.8 (1-55)c

a
Mann-Whitney test.

b
Chi-square test.

c
Years since LIS onset was calculated for all participants with LIS to the earliest time they had LIS, either classical or incomplete.

The cause of LIS was ALS (4), brainstem stroke (2), cerebral palsy (1), brainstem AVM (1), and Duchenne muscular dystrophy (1)
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Table 3
Highest mastery level achieved and number of sessions

Participants with LIS Controls P

Maximum AUC score .71 (62-.93) .83 (70-.92) 0.045

Highest level completed 2.3 (1-5) 4.0 (1-5) 0.069

Number of sessions 1.7 (1-3) 1.3 (1-2) 0.414

Mean (range), p value (2-tailed Mann-Whitney), AUC area under the curve, LIS locked-in syndrome
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