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ARTICLE

Vigilance state fluctuations and performance using brain–computer interface
for communication
Barry Oken a, Tab Memmott a, Brandon Eddyb, Jack Wiedrickc and Melanie Fried-Okenb

aDepartment of Neurology, Oregon Health & Science University, Portland, OR, USA; bInstitute on Development and Disability, Oregon Health
& Science University, Portland, OR, USA; cBiostatistics and Design Program, Oregon Health & Science University, Portland, OR, USA

ABSTRACT
The effect of fatigue and drowsiness on brain–computer interface (BCI) performance was evaluated.
Twenty healthy participants performed a standardized 11-min calibration of a Rapid Serial Visual
Presentation BCI system 5 times over 2 h. For each calibration, BCI performance was evaluated using
area under the receiver operating characteristic curve (AUC). Self-rated measures were obtained
following each calibration including the Karolinska Sleepiness Scale and a standardized boredom
scale. Physiological measures were obtained during each calibration including P300 amplitude, theta
power, alpha power, median power frequency, and eye-blink rate. There was a significant decrease in
AUC over the five sessions. This was paralleled by increases in self-rated sleepiness and boredom and
decreases in P300 amplitude. Alpha power, median power frequency, and eye-blink rate also increased
but more modestly. AUC changes were only partly explained by changes in P300 amplitude. There was
a decrease in BCI performance over time that related to increases in sleepiness and boredom. This
worsened performance was only partly explained by decreases in P300 amplitude. Thus, drowsiness
and boredom have a negative impact on BCI performance. Increased BCI performancemay be possible
by developing physiological measures to provide feedback to the user or to adapt the classifier to state.
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1. Introduction

Brain–computer interface (BCI) systems for communica-
tion have relied on neurophysiologic signals for intent
selection of letters and words [1]. With the ultimate goal
of serving as an augmentative and alternative communica-
tion tool for people with severe speech and physical
impairments, BCI systems are of particular interest for
individuals with brainstem strokes or neurodegenerative
disorders when traditional access methods have been inef-
fective due to limited voluntary motor function [2–4].

One paradigm referred to as the P300-based speller
is popular for communication BCIs. Target letters are
interspersed with non-targets in an oddball paradigm.
Perception of the salient target results in an attentional
event-related response (e.g. a P300). The stimuli used
to generate the attentional potentials generally appear
in various displays, from Rapid Serial Visual
Presentation (RSVP) [5,6] to matrix speller paradigms
[7,8] or nested presentations such as the Hex-O-Spell
or Shuffle Speller interfaces [9,10]. More complex sys-
tems have merged P300 with steady-state visual evoked
potentials or even used non-visual modalities [11,12].
The BCI system relies on various machine learning

approaches to detect the presence of the target from
just several target stimuli.

Attentional potentials are known to be sensitive to
the vigilance state of the individual. State-dependent
alterations in attentional biomarkers have been identi-
fied, such as P300 amplitude [13–15] or event-related
desynchronization [16].

Intra-individual performance variability associated
with vigilance changes is related, in part, to variation
in attention performance. Performance variability has
been studied across multiple time frames, spanning
from seconds to years, using methods ranging from
single cell recordings [17] to fMRI [18]. Intra-
individual variation in cognitive performance is greater
with aging [19], clinical disorders including traumatic
brain injury [20,21], sleep disturbances [22], vigilance
decrements [23], and medication [24].

Intra-individual performance variability is in part
related to changes in phasic and tonic activation states of
cortex that modulate cortical signal processing. The termi-
nology used to describe these activation states varies,
depending on the specific field. Arousal level on the wake-
sleep spectrum is one aspect of the variability. Drowsiness
or stage-1 sleep with the eyes closed is well-described from
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the clinical EEG perspective [25]. The clinical sleep field
has established a scoring system for stage-1 sleep based on
slower frequency EEG, decreased eye blinks, and increased
slow lateral eye movements [26]. An individual who, by
EEG criteria, is drowsy or in stage-1 sleep contrasted to
wakefulness, will have poorer ability to process informa-
tion, including BCI stimuli. Other conceptual states such as
vigilance, mental fatigue, and boredom also will impact
cognitive processing and produce intra-individual varia-
bility in performance. Vigilance decrement is a term used
to describe the decline in performance, usually on
a repetitive or boring task over time [27,28]. The vigilance
decrement is sometimes related to sleepiness but is con-
ceptually independent because it extends into boredom –
another state of inattention related to lack of motivation,
mental fatigue, and the vigilance decrement [29].

BCI research and development would benefit from
a better understanding of performance variability related
to state ranging from seconds to hours in both healthy
populations and people with disabilities with the intention
to maximize performance. As stated by Millan et al. [30],
there is a need for optimized human-computer interac-
tions in which the interface ‘. . . adjust[s] the dynamics of
interaction as a function of the user’s control capabilities’.
These control capabilities extend into both attentional and
cognitive resource availability.

Automated drowsiness and vigilance detection sys-
tems have been used for driver and cognitive perfor-
mance fatigue, including for BCI [31–35]. Some
researchers have even begun to incorporate functional
near-infrared spectroscopy to drowsy detection [36,37].
While many psychophysiology researchers have related
non-BCI performance errors to EEG measures of vig-
ilance, few researchers have specifically looked at how
BCI performance changes relate to EEG vigilance
changes. Recently, a study on BCI for communication
with participants with locked-in syndrome showed
that, although performance was generally low, there
was a negative correlation between accuracy and theta-
band power, possibly related to decreased vigilance
[38]. A recent study took a novel approach to calcula-
tion of state via the use of a multimodal design [31].
Data were extracted from secondary sensors of eye
activity and EEG which greatly improved the classifica-
tion of reduced alertness. Increased blink rate was
identified as the most sensitive among several metrics
of eye activity associated with increased mental fatigue.

We propose to explain the influence of attentional
changes in BCI performance from both neurophysiologic
and behavioral measures. First, we hypothesize that
repeated RSVP BCI sessions will induce increased drow-
siness and boredom. The task consists of detecting
a target letter while viewing single letters sequentially

flashed on a display and thus is not cognitively demand-
ing. While not cognitively demanding, it clearly requires
sustained attention to the current moment that is dis-
cussed in varied contexts such vigilance [23], flow theory
[39], and even mindfulness meditation [40]. This
increased drowsiness and boredom will be reflected in
self-rated measures as well as physiological changes. The
physiological changes will include decreased P300 ampli-
tude (drowsiness and boredom P300 paper) and thus BCI
performance. In addition, the increased drowsiness will
be associated with increased eye blink rate [41], increased
alpha and theta power [25] and likely increased median
power frequency which is highly related to the high
percentage of EEG power contained in the alpha fre-
quency range. Within-subject comparisons will further
analyze whether any observed performance declines are
related to P300 amplitude reductions or other EEG
changes. This may determine whether these measures
would be useful as within- or between-subject predictors
of BCI performance.

2. Materials and methods

2.1. Participants

A convenience sample of 22 healthy adults from the
Portland, Oregon USA metropolitan area participated
in this study. All participants passed a telephone cog-
nitive screening and provided demographic informa-
tion, including years of education. Exclusion criteria
included significant visual impairment, photosensitive
seizures, or current use of medications that would
likely affect EEG or wakefulness such as neuroleptics,
narcotic analgesics, and benzodiazepines. Participants
signed informed consent prior to enrollment. This
study was reviewed and approved by the Oregon
Health and Science University Institutional Review
Board (#15,331). After consenting, a brief health
screening was conducted to document changes in med-
ical status, and recent caffeine intake, alcohol intake,
nicotine intake, and sleep. Participants also passed
a brief vision screening, including visual acuity at 2 ft.

Data from 20 participants were analyzed. Two par-
ticipants were excluded: one participant was unable to
complete the study due to discomfort with the elec-
trode cap, and the second participant’s data were
excluded from analysis due to significant artifact
caused by the participant manually moving sensors
during calibrations. Seventeen participants reported
they were Caucasian, one African-American and two
Asian-American, and one Caucasian reported being
Hispanic. The mean age (SD) was 34.3 years (13.4),
the mean duration of education was 16.8 years (2.5).
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The cohort included 14 women and 6 men. The aver-
aged total reported sleep the night before test session
was 425.1 min (83.7).

2.2. Procedures

The experimental design was a single study visit with
each participant performing five BCI calibration ses-
sions on the same day with physiological measures
obtained during each calibration. The primary out-
come measure was classifier accuracy measured by
AUC. At the start of the study visit, participants com-
pleted the Profile of Mood States (POMS) focusing on
the Vigor and Fatigue subscales [42], the Pittsburgh
Sleep Quality Index [43], and reported how much sleep
they had the previous night (reported as the difference
between bedtime and rising time). The WAIS-IV
Letter-Number Sequencing (LNS) [44] was adminis-
tered to evaluate the effect of working memory capacity
on the calibration performance. Two self-rated ques-
tionnaires were completed after each calibration: slee-
piness was assessed with the Karolinska Sleepiness
Scale (KSS [45];), and boredom was assessed with the
6-item Boredom Questionnaire [46].

The RSVP Keyboard™ BCI system was used, with
code that was developed in MATLAB (MathWorks,
Natick, MA) [6,47]. The RSVP Keyboard™ is a non-
invasive, P300 speller that presents letters in a rapid
serial visual presentation, and classifies letter selection
based on EEG data. During generative spelling, which
was not used in this experiment, the system fuses the
EEG data with input from an integrated language
model using probabilistic Bayesian fusion [48].
Twenty-eight characters including the English alpha-
bet, < for backspace, and ㅁ for space, were presented
on a black background sequentially at 5 Hz.

A DSI-24 dry-electrode cap (Wearable Sensing, San
Diego, CA), featuring 21 electrodes positioned at approxi-
mately 10–20 locations, with the ground at FpZ, was placed
on the participant’s scalp. Two ear-clip dry-electrodes were
placed on the participant’s earlobes as a reference. The ear-
clip electrodes were built into the DSI-24 dry-electrode
cap. The DSI-24 dry-electrode cap was connected directly
via USB to the desktop. Each channel was visually
inspected on the signal-monitoring graphical user interface
(Wearable Sensing, San Diego, CA) that displayed EEG
signals from the active electrodes and allowed signal qual-
ity to be verified before the user began the BCI calibration.
We used Wearable Sensing’s Diagnostic Tab to confirm
good electrode contact on setup and between calibration
sessions. Good contact indicates impedance less than 1
Mohm, voltage less than 5000 uV, and root-mean-square
less than 15 uV in all channels. The EEG researcher

ensured good signal quality for alpha and other EEG
activity and that there was electromyographic activity dur-
ing jaw clenching. Electrodes were adjusted as necessary to
achieve maximal signal quality. For example, the
researcher adjusted electrodes if there was significant
sweat artifact or cardioballistic activity. Signal quality was
re-examined between each calibration session.

For the calibration task, participants were asked to
sit stationary in a chair exactly 24 inches from a Dell
1704FPT 17-in monitor (Dell Inc., Round Rock, TX)
positioned at eye level. Participants were introduced to
the RSVP Keyboard™ via a video recording presented
on a separate nearby external monitor prior to com-
pleting a calibration. Each calibration required the par-
ticipant to visually attend to the center of the monitor.
Each calibration consisted of 100 trials and lasted 11
min. In each trial, a target letter of about four degrees
visual angle was presented at the center of the screen
and then a red ‘+’ was presented in its place to prepare
the participant for the trial. A series of 10 letters
(including the target letter) then was presented at
a rate of five per second in the center of the screen.
Participants were encouraged to select a metacognitive
strategy to ‘alter’ their brain signal for the intended
selection when they saw the target letter. A sample
instruction was: ‘When you see your target letter, you
will need to do something to change your brain signal
in order to “select”. Some possible ways to change your
brain signal might include thinking “BAM” when you
see the target letter; pretend that you are clicking
a mouse when you see the target letter, or; think
about a sensation (like hot or cold) or a sound when
you see the target letter.’ Following the fifth and final
calibration, participants were administered a second
POMS questionnaire.

2.3. EEG processing

EEG was analog filtered by the DSI-24 from 0.003 to
150 Hz and sampled at 1200 samples per sec. The
RSVP software used a Butterworth bandpass filter
from 1.5 to 42 Hz and downsampled to 256 Hz
[6,47]. Machine learning of RSVP data was trained on
500 msec of EEG following target and non-target let-
ters using a regularized discriminant classifier follow-
ing dimension reduction using a principal components
analysis. The best parameters for the classification were
obtained using a 10-fold leave-one-out cross-validation
[6,47] At each session, the Nelder-Mead simplex-
reflection method [49] was used to optimize the free
parameters such that a local maximizer of the area-
under-the-ROC-curve (AUC) estimated using 10-fold
cross-validation is achieved. The scores for each
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validation fold are calculated and the 10 scores are
concatenated to generate the session AUC. Other BCI
performance metrics besides the AUC such as
Information Transfer Rate [50] were not possible
since only classifier calibration sessions were used.

Outcome measures that have been shown to be
sensitive to performance declines related to vigilance
decrements or drowsiness were analyzed: P300 ampli-
tude, alpha power, theta power, MPF, and eye-blink
rates.

EEG for P300 amplitude analysis was imported to
EEGLAB v 14.1. Independent Component Analysis was
used to remove eye blinks and segmented −100 to
1000 ms around target letters. Data then were semi-
automatically artifact-rejected based on the presence of
muscular artifact or other larger interference not
removed by filtering. P300 amplitude was calculated
in the Cz channel with EEGLAB using a peak-to-
trough method with the highest positive potential in
the 350–600 msec range after letter presentation as the
peak and the most negative potential preceding the
P300 peak as the trough.

The EEG for frequency analysis was segmented into
4-s epochs since the stimulus presentation sequence
including the initial target letter presentation lasted
approximately 4 s. Semi-automatic artifact rejection as
for the P300 was applied. Following application of
a Hanning window using the MATLAB signal proces-
sing toolbox hann() function with periodic window
sampling, frequency analysis was done by MATLAB’s
power spectral density function and averaged across all
the epochs for each calibration session. Frequency band
spectral density measures were calculated for theta (4–
7.75 Hz) and alpha (8–12.75 Hz). MPF (2–20 Hz) was
calculated using the MATLAB medfreq() function.

Eye-blink rates were obtained using an average of Fp1/2
channels and MATLAB’s findpeaks() function with
MinPeakDistance = 75 samples and
MinPeakHeight = 50 uV. We used the time elapsed in
seconds for 10 blinks to occur to determine blink rate and
took the average of those values to calculate the session
blink rate per second and per minute. To avoid pre- and
post-trial artifacts, both blink rates, and the frequency
measures were calculated from trial stimulus start time to
end time as was done with the frequency measures.

3. Statistical analysis

A main goal of this study was to identify potentially
useful predictors of BCI performance with respect to
subject vigilance. A useful between-subject predictor
could help with individualizing stimulus presentation
and EEG classification; for example, alternative BCI

configurations could be applied to mitigate subject-
specific deficits in vigilance. A useful within-subject
predictor might enable real-time monitoring, adapta-
tion, or feedback in response to vigilance decrements.
Further, if a within-subject association does not hold
cross-sectionally between subjects, that is an indication
of (possibly unmeasured) intruding factors that differ
from subject to subject. Given this broad goal to find
associations that were predictive (high correlation),
impactful on performance (meaningful effect size),
and reliable across subjects (high statistical signifi-
cance), we felt it was important to fully explore the
space of correlations among the measures under con-
sideration and report on all findings, regardless of
strength or future promise. Due to the limited sample,
highly interrelated measurements, and lack of an
a priori causal model of the associations, we opted for
one-by-one correlations as the most informative
exploratory approach. We have not adjusted any of
the p-values for multiple comparisons because such
corrections are not meaningful when reporting all
results; that is, the relative ‘significance’ among all
findings is the same with or without adjustments, and
since we are not making population-level claims at this
juncture, the p-values are merely descriptive devices
used to characterize reliability of associations within
the sample at hand. We have not filtered any of the
results presented here based on their p-values or other
statistical summaries, and have attempted to present an
appropriately tempered set of judgments concerning
whether and to what degree certain variables appear
to be important for the scientific question.

For between-subject analyses, we examined the rela-
tionships between session-static variables such as baseline
sleep quality and across-session average AUC. These com-
parisons provide information about whether interindivi-
dual heterogeneities may be predictive of a subject’s typical
or future performance. Measures obtained only at baseline
were Pittsburgh Sleep Quality Index (PSQI), self-reported
minutes slept the night before, and LNS. POMS-fatigue
and POMS-vigor were obtained at baseline and again at
the end of the final calibration session. Mean AUC and
mean P300 amplitude were obtained by averaging results
from the five sessions. Pearson correlation coefficients
were calculated for mean AUC versus age, years of educa-
tion, LNS score, reportedminutes of sleep the night before,
PSQI, and the two POMS measures. To analyze the rela-
tion of these baseline measures to performance decrement,
linearized within-subject change in AUC across sessions
was estimated as the slope in a simple linear regression of
the AUC on the session number, separately for each sub-
ject. The AUC slopes and the five individual session AUCs
were also correlated to the baseline measures listed above
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to examine whether the rate of decline or ‘eventual’ per-
formance may be related to subject-specific characteristics.
To estimate these correlations, we used Spearman correla-
tion coefficients because of the likelihood that cumulative
session effects would tend to differ by subject and create
nonlinearities in the relationships between BCI perfor-
mance and baseline measurements. (The Spearman statis-
tic is more sensitive than Pearson to true correlations when
the underlying relationship is nonlinear.)

For within-subject analyses, the primary outcome
measure for each calibration session was classifier accu-
racy measured as AUC. The changing values across time
for each participant were related to other measures of the
same participant’s vigilance at the same timepoints. This
analysis allows us to explore whether a subject’s changing
internal state may be predictive of (and possibly causally
related to) current BCI performance in real time. The
other measures included self-report of sleepiness (KSS),
self-report of boredom, and physiological measures
potentially related to drowsiness: P300 amplitude, theta
power, alpha power, MPF, and eye-blink rate.
A complication here is that the five session values for
a participant are not independent observations but rather
show expected positive correlation by virtue of being
close repeated measurements on the same subject; the
actual amount of information available from the five
sessions is called the ‘effective’ sample size (always less
than five in this case), and is calculated as described
below. Within-subject (i.e. session-by-session) correla-
tions between AUC and P300 amplitude, KSS score, and
boredom score were estimated using Bland and Altman’s
method [51], implemented as a fixed-effects longitudinal
model [52]; this method calculates the average correlation
between the measures of interest observed in individual
participants, while accounting for the expected correla-
tion in all values due to the repeated measurements.
Degrees of freedom for the significance calculations
were taken as the number of subjects times the average
effective sample size of a subject’s panel (calculated as 5/
(1 + 4 * ICC), where ICC represented the intraclass
correlation coefficient estimated by the fixed-effects
model for the outcome), minus 3. Between-subject corre-
lations in these longitudinal measures (essentially, corre-
lations of the across-session means) were estimated using
the complementary ‘between-effects’ longitudinal estima-
tor used in the calculation of the fixed-effects esti-
mates [52].

As summaries of the changes in the longitudinal
measures, we considered a marginal linearized change
(i.e. the average of change rates across timepoints) as
a characterization of effect size to indicate to what
extent performance or vigilance was being affected by
repeated trials of a boring task. The marginal linearized

change in AUC, P300 amplitude, and the KSS and
boredom values across sessions was estimated using
a mixed random-effects model of the outcome
regressed on session number. This analysis allowed
for subject-specific starting values and deviations
from the average slope, with unstructured covariance
between the random effects, assumed exponential
decay of correlation in residual errors, and estimated
covariance using the Huber-White robust (‘sandwich’)
estimator [53]. In addition to marginal slope estimates
from these models, effect sizes were calculated as
change in outcome per standard deviation (SD) from
the first session, and as the mean fraction of the pre-
vious session’s value (averaged over model predictions
for the sessions).

Finally, marginal linear structural equation model-
ing [54] was used to estimate the fraction of variance in
AUC explained by EEG values, adjusting for time (as
session number), and to perform a mediation analysis
for the hypothesis that P300 amplitude change med-
iates change in AUC. The assumed model for EEG
relationship to AUC was: time→EEG→AUC←time.
Stata version 15.1 was used for all statistical analyses.

4. Results

There was no indication of significant correlation of
age with either the mean AUC or the AUC from the
first session (largest correlation = −0.2), but the corre-
lation between age and the AUC decline was strongly
negative (−0.4, p = 0.00003), indicating that older par-
ticipants tended to show less performance decline.
There was a positive correlation between years of edu-
cation and mean AUC (0.5, p = 0.014), and the corre-
lations with the session AUCs were consistently about
0.4 or 0.5 with generally low p-values (between 0.015
and 0.15); the AUC drop was also somewhat negatively
correlated with years of education (−0.25, p = 0.014),
suggesting that better-educated subjects may be both
better-performing in general and able to sustain BCI
performance for longer. LNS correlated highly signifi-
cantly with the first-session AUC (0.7, p = 0.0003), but
correlations with later sessions (and with the mean
AUC) were negligible, and correlation with the AUC
drop was positive and strong (0.3, p = 0.002). This
pattern points to a relationship between working mem-
ory and peak performance. There is a faster loss of
performance for those with better working memory
as they become bored or sleepy.

Perhaps counterintuitively, reported minutes slept
the night before was negatively correlated with both
first-session AUC and mean AUC (−0.4, p = 0.07) but
not AUC slope (magnitude only 0.1). Correlations
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between mean AUC and PSQI, POMS-vigor (either at
baseline or exit testing), and POMS-fatigue (either at
baseline or exit testing) were all small (less than 0.2 in
magnitude) with large p-values. Similarly, neither first-
session AUC nor AUC drop was significantly corre-
lated with PSQI or POMS-fatigue either at baseline or
end of testing (all correlations 0.1 or less in magni-
tude). For POMS-vigor at baseline and exit testing,
however, while the correlation with first-session AUC
was extremely weak (−0.2, p = 0.4), the correlation with
AUC drop was moderately suggestive at approximately
the same magnitude (−0.2 with p = 0.1 at baseline, −0.3
with p = 0.01 at exit testing). This pattern is interesting
as a hint that livelier subjects probably experience less
decline in future BCI performance than less lively sub-
jects and confirms the intuition that those who were
more alert at the end of testing tended to be the same
as those who had sustained their BCI performance
better.

The between-subject correlation of mean AUC with
mean P300 amplitude was positive but weak (0.3,
p = 0.2), and the correlations with session AUCs
declined in magnitude (from 0.3 to 0.1) as the sessions
progressed, hinting that factors other than P300 ampli-
tude became increasingly influential on AUC as bore-
dom and sleepiness set in.

The key analysis for the primary aim demonstrated
that performance significantly decreased over the five
successive BCI sessions with AUC averages decreasing
from 0.88 ± 0.05 to 0.79 ± 0.10. The typical rate of drop
was 2 ± 0.5 points per session (z = −3.8), which is
roughly 2/5 of the first-session SD. See Table 1 and
Figure 1. Self-rated measures of drowsiness (KSS) and
boredom significantly increased: drowsiness z = 7.0
and boredom z = 5.7. The increase in KSS was by 3/5
of the first-session SD and the increase in boredom was
by 1/3 of the first-session SD, each increasing about
15% per session on average. P300 amplitudes signifi-
cantly decreased over time, at an average rate of 11%
decline per session (z = −4.7).

There was an increase in alpha power (z = 2.6)
across the five sessions but this increase was small, by
about 1/12 of the first-session SD. A comparably small
increase in MPF was observed (1/11 of the first-session
SD, z = 3.1). Blink rate also increased, from 25.5 -
per minute in the first session to 34.5 per minute in
the last session (z = 3.1). We observed a transient
increase in mean theta power at session two (Table 1)
due to a single subject extremely large outlier, but there
was no apparent change in theta power over the
remaining sessions and overall (z = −1.1).

Within-subject correlations from the fixed-effects
regressions showed that AUC was negatively correlated Ta
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with KSS (−0.46, p = 0.009) and boredom (−0.47,
p = 0.015), and positively correlated with P300 ampli-
tude (0.64, p = 0.00035). These strong within-subject
correlations indicate a tendency for all of these mea-
sures to change together over time for the same subject
(see Figure 1). This may hint at causal connections
among them, with implications for future experimental
manipulations.

There was roughly a 3.3-point drop in each sub-
ject’s AUC per unit SD drop in that subject’s P300
amplitude. This trend was highly reliable across sub-
jects (z = 5.3). However, as already noted, there was
only a weak between-subject correlation between
mean P300 amplitude and mean AUC (r < 0.3 and
z < 1) that actually declines (approaches zero in
magnitude) as the sessions progress. This suggests
there are factors other than P300 that become increas-
ingly influential on AUC; there is considerable time-
and subject-level confounding in the marginal rela-
tionship. That is, just knowing the subject’s current
or average P300 as a single summary is not good
enough; one also needs to know how long the subject
has been tested, whether their AUC is trending up or
down, and other factors that have not yet been
defined or measured. Further analysis using structural
equation modeling revealed the AUC decrease over
time was not fully explained by the P300 amplitude

decrease. The direct effect of time on AUC was −1.2/
session (z = −2.0), and the indirect effect through
declining P300 amplitude was −0.7/session
(z = −2.5). Both the direct and indirect effects are
significant, suggesting incomplete mediation of the
AUC decline by the P300 decline (likelihood ratio
test p = 0.0003).

We found no evidence that the EEG measures of
theta power, alpha power, or MPF (as within-session
averages of 4-s epochs) were predictive of AUC.
Associations with AUC were uniformly small, typically
only about 1/2 point of AUC per SD change in the
measure.

5. Discussion

While individuals with severe speech and physical
impairments value BCI systems for communication,
there are many variables that may affect their perfor-
mance and challenge the functional use of this new
technology [4]. This study demonstrated that BCI per-
formance for calibration of a P300 speller by healthy
adults is significantly affected by attentional factors as
measured by both neurophysiologic and behavioral
variables. There was a significant decline in BCI per-
formance as measured by AUC over a 2-h period. This
was accompanied by an increase in sleepiness and

Figure 1. Standardized values for AUC, P300 amplitude, KSS, and boredom scales plotted over calibration session number. Because KSS
and boredom increase with time, their scores were inverted to better demonstrate the relationship of their trends to AUC and P300
amplitude. All significantly changed over the five sessions (p < 0.00001). Individual values were standardized by the residual standard
deviation estimate from fixed-effects regression on a polynomial in session number and averaged by session using the same framework.
An approximate 2-standard-error lower bound for comparing the first session to any subsequent session is 0.7 units below the first
session’s value for any of these standardized measures, so horizontal error bars can be visualized accordingly. It is easy to see that every
session is not just lower in value than the previous one but also falls more than 0.7 units below the first session; by the final session, all
measures have dropped by at least 1.5 standard units (AUC) and by as much as 3.3 standard units (KSS).
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boredom. The AUC had a strong within-subject nega-
tive correlation with both of these self-rated measures.

The P300 amplitude also significantly decreased
over the five sessions, and the P300 amplitude had
a significant within-subject correlation with AUC.
Whatever someone’s mean P300 amplitude happens
to be, that person will likely demonstrate a decrease
in AUC as their P300 amplitude decreases. While not
unexpected, this confirms that the P300 is a major
contributor to the BCI RSVP Keyboard classifier.
However, our mediation analysis (of the hypothesis
that P300 amplitude change completely mediates
change in AUC) reveals that the AUC decrease over
the five sessions was not solely attributable to the P300
amplitude decrease since the AUC decreases even after
accounting for the partial mediation of AUC by the
P300 amplitude. And despite the very strong within-
subject correlation between AUC and P300 amplitude,
there was no large between-subject correlation between
these two measures. The only partial mediation of
AUC decrease by P300 amplitude decrease and the
lack of intersubject correlation between AUC and
P300 amplitude suggests that the classifier was able to
use time-varying subject-level information beyond the

target stimulus P300 amplitude. This information
could be the amplitude difference between target and
non-target responses, the topography of the P300, or
other aspects of the target evoked response, such as
event-related desynchronization [55,56] or syn-
chrony [57].

Consistent with prior reports, alpha, MPF, and eye-
blink rate all increased over sessions with increased fati-
gue (e.g. [31]). While eye-blink rate decreases in stage 1
sleep with eyes closed [25], blinking increases with drow-
siness in eyes open in this and prior visual cognitive
studies [31,58]. Blinking in an eyes-open context may
be used as an intentional way to increase wakefulness.
Increased alpha has been associated with early stage-1
sleep and this likely contributes to the increase in MPF
before there is a significant increase in theta or other slow
wave activity. Our surprising lack of association of per-
formance with theta overall, which has been observed in
other studies dating back 25 years [59], might be due to
the overlap of this frequency band with our stimulation
frequency (5 Hz). These EEG frequency measures are
therefore highly task- and stimulation-dependent. They
may also be highly individualized, as there were no appar-
ent between-subject associations with performance even

Figure 2. Evoked potential to target letters from a single subject from the first and best (top) and last and worst (bottom)
calibration session as assessed by AUC. The chosen participant had one of the biggest changes from first to last session. These
figures display all 21 channels, and a heat map shows distribution of the P300. One can see the typical P300 maximal Cz
topographical distribution and the significantly more consistent and higher amplitude P300 in the first compared with the last
session.
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though each subject’s changes over the course of the
experiment were related to performance.

5.1. Limitations and future directions

There are several limitations to this study. The out-
come measures were obtained during BCI calibration
sessions which likely have higher mental fatigue com-
pared with a more natural communication task. The
BCI performance and physiological measures were
calculated over an entire calibration session (about
11 min duration) and shorter-term fluctuations
almost definitely contribute to performance variabil-
ity. Assessment of these shorter-term fluctuations in
attention and drowsiness will be necessary in order to
integrate attention and drowsy detection into the
real-time BCI use with the goal of providing feedback
to the participant or adapting the classifier to state.
The participants in this study are healthy adults,
relatively young, 85% Caucasian, and highly edu-
cated. Any findings from this study relevant to
other populations including those with clinical dis-
orders will need to be confirmed. Related to this
issue, performance was correlated to years of educa-
tion and, for the first session, highly correlated to
a conventional working memory measure, LNS. This
may in part explain the discrepancies across BCI
studies in performance between healthy controls
and clinical populations. The decline in performance
over 2 h from an AUC of 0.88–0.79, while not dra-
matic, is sufficient to have an impact on actual com-
munication and likely would be greater in clinical
populations who present with challenges that affect
vigilance systems. Individuals with various stages of
locked-in syndrome do not have the ability to control
schedules for sleep-wake cycles; they often must rely
on caregivers whether they are tired or not, and do
not set their daily activities. Additionally, brain inju-
ries or medications may affect attention. Lack of daily
stimulation may induce levels of inattention and
drowsiness that is not considered within this experi-
ment. There was a significant effect of session num-
ber on many of the measures. Given the experimental
design, the relatively small number of participants,
and the clear indications of hidden subject-level fac-
tors influence on AUC, it was not possible to reliably
disentangle the effects of these related measures on
the AUC independently of (or even adjusting for)
time. An additional limitation of this study was that
calibration sessions were unsupervised. Researchers
allowed participants to complete the calibration with-
out supervision to reduce peer influence on drowsi-
ness but this may have resulted in increased

drowsiness, and one unsupervised subject adjusted
the cap producing excessive artifact.

5.2. Conclusion

BCI performance with RSVP Keyboard showed
a decline over time. Self-reports of increased sleepiness
and boredom significantly correlated with decrements
in P300 amplitude and AUC. While within-subject BCI
RSVP performance was very dependent on P300 ampli-
tude which decreased across time, the lack of intersub-
ject correlation between AUC and P300 amplitude
implies there were aspects of the physiological signal
other than the P300 amplitude that contributed to
classifier performance.

Abbreviations

BCI brain–computer interface
AUC area under the (receiver operating characteristic)
curve
ICC intraclass correlation coefficient
LNS letter-number sequencing
MPF median power frequency
RSVP rapid serial visual presentation
POMS profile of mood states PSQI, Pittsburgh Sleep Quality
Index

Highlights

● BCI performance decreases over time and parallels
increases in boredom and drowsiness.

● P300 amplitude decreases over time and significantly cor-
relates with within-subject performance.

● Decrement in BCI performance over time is not fully
explained by P300 amplitude decrease.
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