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ABSTRACT

Individuals with severe speech and physical impairments may have concomitant visual acuity
impairments (VAI) or ocular motility impairments (OMI) impacting visual BCl use. We report on
use of the Shuffle Speller typing interface for SSVEP BCl copy-spelling with simulated VAI,
simulated OMI, and unimpaired vision. To mitigate the effects of visual impairments, we intro-
duce a method that adaptively selects user-specific trial lengths to maximize expected informa-
tion transfer rate (ITR), which is shown to closely approximate correct letter selection rate. All
participants could type under the unimpaired and simulated VAI conditions, without significant
differences in typing accuracy or speed. Most participants (31 of 37) could not type under the
simulated OMI condition; some achieved high accuracy with slower typing speeds. Reported
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workload and discomfort were low, and satisfaction high, under the unimpaired and simulated
VAI conditions. Implications and future directions for exploration of visual impairment in BCl use

are discussed.

1. Introduction

Brain-computer interface (BCI) technology has been
implemented as an augmentative and alternative com-
munication (AAC) access method for people with severe
speech and physical impairment (SSPI) [1,2], often
resulting from locked-in syndrome (LIS) [3,4]. Many
traditional or popular access methods are ineffective
for this population due to their limited voluntary
motor function. Even eye tracking, which requires only
eye movement, does not work for some potential users
[5]. BCI may offer a viable alternative. Researchers have
investigated BCI spelling interfaces incorporating a vari-
ety of brain signals and stimulus presentation methods,
but users with disabilities typically demonstrate weaker
BCI typing performance than healthy controls.
Individuals with SSPI may present with comorbid sen-
sory deficits affecting their ability to perceive BCI stimuli
and user interfaces. There has been relatively little
exploration of these potentially confounding challenges.

BCI spelling systems often rely on visual stimuli and
user interfaces presented via screens [1]. Although

individual system requirements differ, use of visually-
presented BCI typically requires skills including visual
acuity to discriminate the desired target, ocular motility
to direct gaze to a stimulus, and the ability to maintain
fixation on that stimulus [6-8]. These requirements are
critical, as users with SSPI frequently present with
impairments that can degrade visual BCI performance.
Visual acuity often decreases with age in the general
population [9], and may be worse among people with
LIS [10,11]. Reduced ocular motility, as well as other
symptoms including visual fixation impairment, nys-
tagmus, diplopia, and gaze impersistence, have been
observed in individuals with LIS [10] and advanced
amyotrophic lateral sclerosis (ALS) [12].

Literature addressing the effects of reduced visual
acuity or other ocular impairments specifically on
BCI use is limited. Study participants’ visual skills are
rarely assessed or reported, though some researchers
have suggested such impairments as possible explana-
tions for poor BCI spelling performance among users
with SSPI [13,14]. The role of ocular motility in use of
the popular P300 matrix speller has been investigated
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using eye tracking to monitor the eye movements of
healthy participants. Such systems have been found to
require overt visual attention, dependent on the user’s
ability to direct her gaze with eye movement; selection
accuracy is both lower and less consistent across parti-
cipants when gaze is restricted [6,15,16]. Alternative
P300 speller layouts which reduce visual crowding,
arrange targets near a fixation point, and utilize visual
cues (e.g. color, shape, or movement) demonstrate
improved performance under covert attention (fixed-
gaze) conditions [16,17]. Studies of individuals with
SSPI using covert-attention or gaze-independent visual
BCIs are limited, and typically report relatively poor
performance [18,19].

Steady state visually evoked potential (SSVEP) BClIs
may offer an advantage over P300-based systems for
some users with severe disabilities [20]. The SSVEP
response is elicited by rapidly oscillating visual stimuli,
such as flashing lights, and can be measured via elec-
troencephalography (EEG). In a typical SSVEP-based
BCIL, multiple stimuli flicker at different frequencies.
The user attends to a particular stimulus to select a
target, producing an SSVEP response to the target
stimulus frequency. By observing the EEG’s frequency
response, a BCI can infer the user’s intent. Like the
P300, SSVEP is more effective for BCI control when
used with overt attention [21,22]. Allison and collea-
gues observed substantial inter-participant differences
in SSVEP signals for healthy participants under covert
attention conditions with a two-class system; only half
of participants produced SSVEPs sufficient for poten-
tial control of a binary-choice BCI [22]. In another
study, five individuals with advanced ALS and
impaired eye movement used a four-stimulus SSVEP
BCI as a simple, phrase-based communication system
with varying degrees of success [23]. Brumberg and
colleagues used a four-stimulus SSVEP BCI (without
a communication task) with people with SSPI, some
with reduced ocular motility. Two of their five partici-
pants achieved classification levels significantly better
than chance [24]. Lesenfants and colleagues tested a
covert-attention SSVEP-based system for binary-choice
communication (e.g. yes/no) with healthy participants
and people with LIS. Eight of 12 healthy users and two
of four users with LIS achieved accuracy above chance
levels when answering yes/no questions [25].

In this article, the Shuffle Speller interface is
explored as a potential means of mitigating the effects
of visual impairments on SSVEP BCI typing. Shufile
Speller is a typing interface which makes the most of
the control signals produced by individual users [26].
Its algorithm learns each user’s unique pattern of
responses and errors, and adapts stimulus presentation
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accordingly. It aggregates results from multiple user
selections before typing a letter, increasing the likeli-
hood that the letter will match the user’s intent. Here
we describe how error-prone SSVEP BCI classifica-
tions, such as those that might be seen with covert
attention, can be combined to produce a single, accu-
rate character selection. We also introduce a method of
maximizing how quickly the system can infer a user’s
intent by selecting a trial length tailored to a particular
user and classifier. Shorter trial lengths offer more
frequent opportunities for users to express their intent.
On the other hand, longer trial lengths provide more
physiological evidence to classify, typically yielding
higher accuracies. Adaptive trial length selection
leverages the trade-offs presented by a specific user’s
calibration data to maximize user communication
rates. Specifically, we optimize expected information
transfer rate (ITR), which we demonstrate to be a
strong proxy for the rate of correct character selections.
Adaptive trial length selection may be useful in miti-
gating the effects of visual impairments.

Given the prevalence of visual acuity impairments
(VAI) and ocular motility impairments (OMI) among
people with SSPI, and the potential impacts of these
impairments on visual BCI use, we investigate the
effects of simulated VAI and OMI on Shuffle Speller
SSVEP typing performance. VAI was simulated using
blurred goggles. OMI was simulated by confining the
user’s gaze within a circle, using eye tracking to ensure
compliance, and discarding trials in which the user’s
gaze wanders outside the circle. We hypothesized that
simulated VAI would not significantly affect Shuffle
Speller typing accuracy, as the interface had been mod-
ified for this experiment with VAI in mind. Based on
previous reports in the literature and on preliminary,
informal explorations of SSVEP typing with Shufile
Speller, we expected highly variable performance
under the simulated OMI condition, with some parti-
cipants able to type accurately and others unable to
type at all. Finally, we expected generally positive user
experience (UX) ratings (low discomfort, low work-
load, and high satisfaction) for Shuftle Speller under
the unimpaired and simulated VAI conditions, with
more negative ratings under the simulated OMI
condition.

2. Methods
2.1. Shuffle speller

Shuffle Speller is an algorithm that adapts to an indi-
vidual user’s unique abilities to improve typing perfor-
mance. While full technical details are reported in
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previous work [26], we describe here the features of
Shuffle Speller which are relevant to mitigating the
effects of visual impairments, and how the user inter-
face was configured for this study. See supplemental
online materials for videos and additional information.

The Shuffle Speller interface includes a dashboard
area which displays the typed string (and target string,
for copy-spelling tasks) and messages about task status
(e.g. complete, break), as well as a keyboard area with
colorful boxes used for making letter selections
(Figure 1). LED arrays are placed around the screen
next to each box for use with SSVEP BCI. Typing
begins with the 26 letters of the English alphabet, plus
space and backspace characters (_ and <, respectively),
arranged alphabetically in rows in the center of the
keyboard area. The user finds her target letter and
follows it as it moves to one of four boxes around the
perimeter of the screen. To facilitate letter tracking, all
boxes are given a unique color, and letters are dis-
played in the color of the next destination box. The
user indicates which box contains her target character
by attending to the LED array nearest that box. After
SSVEP stimulation and classification, all boxes are
shaded, with color intensity corresponding to the sys-
tem’s confidence that a given box represents the user’s
intended selection. If the probability of any character in
a selected box exceeds a predetermined confidence
threshold (e.g. 85%), it is typed in the dashboard area,
and the user is notified via an audio cue (the letter
name is spoken aloud in a synthesized voice).
Otherwise, the system queries again by shuffling the
characters into different groups, and the user selects

another box. All 28 characters remain visible at all
times during typing, allowing users the opportunity to
recover and type their desired character even after an
incorrect selection on a single query. Queries are
repeated, and the system incorporates SSVEP evidence
from each box selection, until the confidence threshold
is reached for some letter.

Many Shuffle Speller interface features can be custo-
mized, including shuffle animation speed, pre-shuffle
delay time, and the number, size, color, and position of
boxes. The system automatically adjusts the number of
queries per letter selection and the partitioning of letters
into boxes to meet the needs of individual users, based on
the varying strengths of their SSVEP responses. SSVEP
response strengths vary both across and within users (as
in [24]). Figure 2 displays confusion matrices represent-
ing SSVEP response patterns for two hypothetical users.
The two users have identical average accuracy, but sub-
stantial differences in the reliability of SSVEP estimation
for individual stimuli. Shuffle Speller learns the varying
trustworthiness of each SSVEP response so that SSVEP
classifications are incorporated into letter selection in a
principled manner. Confusion matrix (a) represents a
user with uniform reliability for all stimuli and uniform
distribution of errors, an unlikely occurrence. Confusion
matrix (b) demonstrates a more varied response pattern.
An estimate indicating a response to the 9.7 Hz from user
(b) should elicit some skepticism from the system, as it is
known to be less accurate. In this case Shuffle Speller
hedges by obtaining additional evidence, querying the
user again and avoiding selecting a letter too hastily.
Alternatively, Shuffle Speller puts its trust in an 8 Hz

Figure 1. Shuffle Speller user interface.
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Figure 2. Hypothetical Confusion Matrices. Note that (a) and (b) have the same average accuracy despite their differences. As
typically defined, ITR imposes symmetry assumptions which effectively approximate (b) as (a). Expected ITR, as defined in (1), does

not impose these symmetry assumptions.

response from user (b) by advancing towards a letter
selection with fewer queries, as excessive querying
would only result in slower letter selection. The user-
specific model of SSVEP response accuracy is constructed
from calibration data. It describes the expected accuracy
and errors associated with each SSVEP response for a
given user. This model allows the system to trust
responses that are associated with higher accuracies in
the calibration. By doing so, Shuftle Speller adaptively
paces letter selection. Users with error-prone SSVEP
classifications type accurately by responding to additional
queries, while users with accurate SSVEP classifications
type quickly by avoiding unnecessary querying. Above
some minimum SSVEP accuracy threshold, Shuffle
Speller allows everyone to select letters accurately; only
typing speed is impacted by poor SSVEP accuracy.

The partitioning of letters among boxes during typ-
ing is user-specific and determined by calibration data.
Shuffle Speller distributes characters in such a way as to
optimize expected ITR (see Section 2.2.) for an indivi-
dual user; this feature is central to its performance.
Shuffle Speller will avoid presenting characters in
boxes associated with inaccurate SSVEP responses,
instead preferring those associated with higher SSVEP
accuracy. This allows the system to maximize the relia-
bility and usefulness of the evidence it receives from
each query. The character partitioning and selection
algorithms utilize data from all previous user inputs,
the user input error model (indicating the reliability of
each SSVEP response), and an integrated 5-gram char-
acter-based language model. (The same language
model was used in previous work [19]; see [27] for a
review of language model use in BCI.) These data are
aggregated to determine the probability of each char-
acter after each query [26].

2.2. Adaptive trial length selection

We introduce a method of selecting a trial length that
maximizes ITR:

PX.X(x> x)

xeXzeX Px X)pX (x)

1. 1
ITR = —1(X,X) = >

T (1)

where x is the target SSVEP frequency, X is the system’s
estimate of this frequency, I is the Mutual Information
function, and T is the trial length (including both
stimulation and inter-trial wait time). Please note that
this definition is a generalization of the commonly used
formula in BCI literature. To provide a complete moti-
vation of our trial length selection procedure we give a
brief description of its difference here. This informa-
tion is not novel within the BCI field; we strongly
encourage unfamiliar readers to review [28-33].

Observe that Py x = PgxPx. ITR definitions vary in
their estimation of these factors. We describe each term
below and outline how our own assumptions differ
from the popular definition.

The first term, Py,y (|x), characterizes how often the
system classifies in favor of frequency x given that the
user observed stimulation at frequency x. This condi-
tional distribution defines a user-specific SSVEP gen-
eration model; it represents how often the system
accurately identifies each SSVEP stimulation frequency
(and, when a mis-classification is made, which fre-
quency is selected instead). Py y(X[xo) is estimated by
normalizing a histogram of all calibration trials in
which the user was stimulated at frequency x;. The
common definition of ITR assumes that each x is
equally accurate and that errors are uniformly distrib-
uted among unintended SSVEP stimuli. This may not
be the case as the positioning of the LED arrays or a
user’s SSVEP responses may result in some errors
occurring more frequently than others, as in confusion
matrix (b) in Figure 2.!

The second term, Px, describes the prior belief
(before EEG data is obtained) that each SSVEP stimu-
lus will be selected. Commonly, this term is assumed to
be uniform, though in practice this is rarely the case.
Specifically, in the spelling task Px(x) is the sum of the
probabilities of all letters which are associated with
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SSVEP stimulus x,. Shuffle Speller’s performance ben-
efit is derived from the optimization of Px (see [26]). It
maps letters to X (i.e. animates letters to different
boxes) to approximate:

1 N
Py :argn}ax?l(X,X). (2)

Note that estimating Px and Pg,y in this way uses only
calibration data. It yields a prediction of correct typing
rate, not an observation. To remind ourselves of this
fact (and distinguish it from other ITR definitions) we
denote it as expected ITR. As will be shown later,
expected ITR for Shuffle Speller is a strong predictor
of the correct character selection rate (Figure 6). As
such, it serves as a useful guide for the effect of para-
meter changes. We use it here to optimize the stimula-
tion time of a single SSVEP trial. Intuitively, a longer
SSVEP stimulus duration mitigates the effects of noise
and artifacts to produce a more accurate SSVEP classi-
fication. However, excessively long trial lengths slow
down the rate at which SSVEP queries can be pre-
sented. To select a trial length which balances these
effects, the system calibrates on longer-than-necessary
SSVEP stimulus durations. Next, we construct calibra-
tion datasets for different stimulation times by truncat-
ing to various durations. Finally, we select the trial
length associated with the calibration dataset which
has the largest expected ITR.

This method provides a principled way of tailoring
the system around a user-specific model of SSVEP
generation. Note that our selection of T seeks only to
type correctly and quickly; it does not take into account
user comfort. If such an innovation were to be used
outside the research environment it is critical to pro-
vide users with as much control as possible in custo-
mizing the system to their needs. The quantification
described above is still valuable: it allows users and
caregivers to explicitly understand how much correct
typing speed is traded away for their comfort.

2.3. Study design

This study followed a randomized, balanced crossover
design in which each participant used Shuffle Speller
with SSVEP BCI under three conditions: unimpaired
vision, simulated VAI, and simulated OMI.
Participants completed a total of four study visits,
approximately one week apart, in a quiet office envir-
onment. The first visit included informed consent,
vision screening, unimpaired SSVEP calibration and a
one-word copy-spelling trial with Shuffle Speller. The
initial copy-spelling trial was intended to introduce
participants to the interface and exclude the effects of

first time use in the experiment; these data were not
included in analysis. During each of the remaining
three visits, participants completed copy-spelling tasks
with Shuffle Speller under one of the three experimen-
tal conditions (unimpaired, VAL, or OMI). Condition
orders were randomly assigned in a counterbalanced
manner.

2.4, Participants and screening procedures

Participants recruited for this study were healthy
adults aged 21-80 years, able to read and communi-
cate in English. Initial screening was done by tele-
phone, and potential participants were excluded if
they reported reduced visual acuity, retinal disease,
or photosensitive seizure disorder, or if they scored
lower than 32 on the Telephone Interview for
Cognitive Status-Modified (TICS-m), an indication
of possible cognitive impairment [34].

During the first study visit, participants underwent a
vision screening focused on skills identified as relevant
to assistive technology use [35]. Acuity, motility, fixa-
tion, and visual field perception were deemed most
important for use of Shuftle Speller, and participants
were required to meet the following additional inclu-
sion criteria: best corrected binocular vision of 20/40 or
better, score of five on all aspects of the Northeastern
State University College of Optometry (NSUCO)
Oculomotor Test [36], and lack of visual field impair-
ment [37]. This study was approved by the Oregon
Health & Science University (OHSU) Institutional
Review Board (approval #15331), and participants
gave written informed consent.

2.5. System configuration and stimulus
presentation

Shuftle Speller was constructed using MATLAB
(MathWorks, Natick, MA) and Psychtoolbox [38]. A
21-inch monitor was positioned 55cm away from the
participant’s face. Four boxes (with dimensions 6° x18°
or 15° x7° visual angle) were arranged on the top, right,
bottom, and left sides of the keyboard area (Figure 1).
Stimulus colors (yellow, lilac, aqua, and red-orange)
were chosen to be maximally dissimilar from one
another while maintaining high visibility against a
black background. Characters were presented in Arial
font with visual angles ranging from 1 to 4 . Pre-shuffle
delay time (i.e. the time allowed for the user to recog-
nize her target character and note its color before
shuffle animation) was five seconds for the initial
alphabetical array and two seconds for each subsequent
query. Shuffle animation duration (i.e. the time



required for letters to move from the alphabetical array
to a box or from one box to another) was 1 second. The
dashboard area displayed the target word and indicated
typed characters. SSVEP stimuli consisted of four LED
arrays (1.6 x2.4 visual angle) attached to the monitor,
one next to each box. The LED array 1) supports
checkerboard stimulation, both on/off and alternating,
and 2) has higher luminous flux with adjustable bright-
ness to better tailor the stimulus to the user across
distance from the monitor and spacing between targets.
Each array included 25 surface-mount LEDs
(Kingbright, City of Industry, CA) arranged in a
5 x 5 square, and was mounted on a 3D-printed car
for easy positioning (Figure 3) [39]. Stimulation fre-
quencies were set at equally spaced intervals within the
alpha band including 8, 9.67, 11.33, and 13 Hz [40].

2.6. Simulated impairments

Modifications were made to simulate VAI or OMI during
both the calibration and copy-spelling tasks for those
conditions. During the VAI condition, participants
wore goggles (Fork in the Road, Madison, WI) designed
to simulate 20/200 visual acuity. This method of simula-
tion is consistent with other recent studies involving
participants without visual impairments [41,42]. During
the OMI condition, a fixation circle with a diameter of 13°

Locl:king
Thumbscrews

Ball and socket joint

Figure 3. Car and rail design for LED array mounting.
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visual angle was centered in the keyboard area, and an
EyeX eye tracker (Tobii, Danderyd, Sweden [43]) was
used to ensure that participants kept their gaze within
the circle. During pilot testing, a 13° circle was the smal-
lest size that allowed some users to type successfully. If a
participant looked outside the circle for more than 10% of
the duration of a trial, she was notified by an alert sound
and a change in the circle’s color, and was required to
repeat that trial.

2.7. Tasks

Each Shuffle Speller session included a calibration and
a copy-spelling task. Before each task, participants
watched a brief demonstration video, with scripted
explanation provided by a researcher. A calibration
session consisted of 80 trials (20 per box) lasting six
seconds each. During each trial, the participant was
instructed to attend to one of the four flashing LEDs,
indicated by a box appearing on the monitor next to
the target LED. The participant could look directly at
the LED during the unimpaired and VAI conditions,
but was required to use covert attention during the
OMI condition. A 10-second break occurred every 10
trials. Calibration data were used to train a classifier
and determine an optimal trial length for copy-spelling,
as described in Section 2.2.

-

Cross Section View
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Each copy-spelling session featured a different list of
ten common five- to seven-letter words drawn from
SUBTLEXus, a dataset of high-frequency American
English words [44]. The total number of characters
(53) was constant across the three word lists.
Participants were instructed to select the backspace
character (<) to correct any typing errors. Copy-spel-
ling sessions were limited to 20 minutes total, but were
ended after five minutes if no letters were selected
during that time. For each session, participants com-
pleted a BCI-specific UX questionnaire modified from
previous work [45], including questions about work-
load, comfort, and satisfaction (questionnaire available
in supplemental online materials).

2.8. Data acquisition

A non-slip elastic headband (Conair Corp., East
Windsor, NJ) was used to position g.BUTTERFLY
active electrodes at approximate locations over Ol,
Oz, and O2 (Figure 4), with Fpz ground and right
earclip reference (g.tec, Schiedlberg, Austria). Oz was
positioned approximately 3cm above the inion, with
O1 and O2 approximately 5% of the head circumfer-
ence to the left and right of Oz. EEG data were sampled

at 256 Hz, recorded with a g.USBamp amplifier (g.tec,
Schiedlberg, Austria), and were visually inspected for
data quality before each calibration or copy-spelling
session. EyeX data were collected at a sampling rate
of 60 Hz, using custom MATLAB software and
GazeSDK (Tobii, Danderyd, Sweden).

EEG features for calibration and copy-spelling were
obtained using canonical correlation analysis (CCA).
The standard CCA approach consists of computing the
maximum Pearson’s correlation between a linear com-
bination of all available channels of EEG data and a
linear combination of template signals [46]. Our clas-
sifier offered confidence estimates alongside its classifi-
cations via a kernel density estimation [47] over the
CCA features. A classifier was trained at the beginning
of each typing session based on individual calibration
data.

2.9. Data collection and analysis

The primary dependent variable was typing accuracy
(percentage of correct character selections out of total
selections; selection of backspace to correct an error
was considered a correct response), as potential BCI
users have indicated that they are willing to accept

Figure 4. Shuffle Speller electrode placement.



lower typing speeds as long as accuracy is high [48,49].
Additional dependent variables included typing speed
(characters per minute), trial length (seconds), and UX
questionnaire responses. Accuracy and speed were cal-
culated using custom MATLAB functions. All data
from paper forms and MATLAB-generated spread-
sheets were stored using REDCap electronic data cap-
ture tools [50] hosted at OHSU.

Accuracy and speed for the unimpaired and VAI
conditions were subjected to paired t tests of mean
equivalence [51] using the tostt command [52] in
Stata 13.1 (StataCorp, College Station, TX).
Considering just the one-sided hypothesis of nonin-
feriority, differences were coded so that negative dif-
ferences would indicate inferior performance under
the VAI condition. The combined test of noninfer-
iority includes subtests for both mean difference of
the conditions and mean separation between the con-
ditions being smaller than a pre-specified negative
value (delta). The delta values for accuracy (0.05)
and speed (1 character per minute) were chosen
based on pilot testing of the system, and reflect the
smallest differences that we consider meaningful.
Noninferiority is suggested by large difference
p-values and small separation p-values. Due to the
small number of participants who were successful
under the OMI condition, only descriptive statistics
were calculated for OMI accuracy and speed. A
McNemar test was used to compare the ratio of
successful copy-spellers under the unimpaired and
OMI conditions.

3. Results

Thirty-eight participants attempted both the unim-
paired and VAI conditions; their demographic infor-
mation is presented in Table 1. Of those, 37 attempted
the OMI condition, as one had to be excluded due to
problems calibrating the eye tracker. See the participant
flow chart in Figure 5 for additional details on eligibil-
ity assessment and study completion. Copy-spelling
task results revealed similar letter selection accuracy,
typing rate, and UX ratings for the unimpaired and
VAI conditions, but significant differences with the
OMI condition. Adaptive trial length proved effective
for maximizing performance, with longer trials sup-
porting accurate typing for several users under the
OMI condition. Detailed results are presented below.

3.1. Typing performance

Only six of the 37 participants who attempted the OMI
condition successfully copied one or more words, while all
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Table 1. Participant demographics.

Mean + SD or
n/38
Age (years) 372 + 1547
Women 26/38
Racial and/or ethnic minority 6/38
Education (years) 173 £ 2.41
Reported use of antidepressant, anticonvulsant, and/or 5/38
drowsiness-inducing medications
Distance visual acuity (both eyes, corrected)
20/20 31/38
20/25 4/38
20/30 2/38
20/40 1/38
Near visual acuity (both eyes, corrected)
20/20 35/38
20/25 3/38

participants did so under the unimpaired and VAI condi-
tions. A McNemar test revealed that simulated OMI sig-
nificantly affected whether a participant could type with
Shuffle  Speller  (y*(1,N = 37) = 31.00, p< 0.0001).
Details on participants who were successful under the
OMI condition are presented in Table 2.

Performance results for all conditions are presented
in Table 3, with OMI results separated into successful
and unsuccessful copy-spelling groups. Paired t tests of
mean equivalence indicated that performance under
the VAI condition was not inferior to that under the
unimpaired condition for either letter selection accu-
racy (delta = .05; p = .3229 for difference and p = .0003
for separation) or speed (delta = 1.0; p = .6898 for
difference and p < .0001 for separation). Mean accuracy
for successful OMI copy-spelling sessions (n = 6) was
comparable to that of the other two conditions, though
speed was greatly reduced. We used linear regression to
examine whether the age of participants had an influ-
ence on BCI performance, and found no evidence to
suggest that it did.

Six participants demonstrated atypical performance
in either the unimpaired or VAI condition, either due
to very low accuracy (< 75%) or exceeding time limits
for individual words or the entire task (see Outliers box
in Figure 5 and Table S1 in supplemental online mate-
rials). As a sensitivity analysis, paired t tests of mean
equivalence were repeated with these participants
excluded (n = 32), with similar results: performance
under the VAI condition was not inferior for either
accuracy (6 =.05;p =.5384 for difference and
Pp<.0001 for separation) or speed (§ = 1.0;p = .5660
for difference and p < .0001 for separation).

3.2. User experience

Selected UX questionnaire responses are summarized
in Table 4 (see Table S2 in supplemental online
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Figure 6. Expected ITR vs. correct typing speed.

Table 2. Successful OMI participant details.

ID Age Distance visual acuity®  Near visual acuity®  Trial length ~ Words copied ~ Accuracy (%)  Speed (char/min)  Session number
A 46 20/20 20/20 8.27 1 100 0.67 1
B 24 20/20 20/20 6.18 4 88.9 1.96 2
@ 23 20/20 20/20 748 3 85.7 1.52 2
D 62 20/20 20/20 8.01 7 97.3 2.65 2
E 21 20/25 20/20 8.01 3 100 1.10 1
F 23 20/20 20/20 6.70 1 100 0.86 2

°Both eyes corrected

Table 3. Shuffle Speller performance results and trial length settings.

Unimpaired (n = 38) VAl (n = 38) OMI: successful (n = 6) OMI: unsuccessful (n = 31)
Accuracy (%) 96.2 + 4.58 95.6 + 5.70 953 + 6.38 a
Speed (char/min) 439 £+ 1.159 446 + 1.072 147 £ 772 a
Trial length (sec)
Mean + SD 526 + 1457 526 + 1.391 744 + 836 495 £+ 1.493
Range 3.30-8.01 3.56-8.27 6.18-8.27 3.30-8.01

®0OMI accuracy and speed results are not reported for unsuccessful participants,

materials for complete UX results). Reported workload
and discomfort were low, and satisfaction high, for the
unimpaired and VAI conditions. Participants reported
higher workload, more discomfort, and lower satisfac-
tion for the OMI condition, regardless of their perfor-
mance in the OMI trial.

3.3. Adaptive trial length

Table 3 summarizes the trial lengths automatically chosen
by Shuftle Speller for each condition and for successful
and unsuccessful OMI participants. Trial lengths were
similar for the unimpaired and VAI conditions and the

as they were unable to type at all

unsuccessful OMI participants, but longer for successful
OMI participants. In the unimpaired and VAI condi-
tions, expected SSVEP selection accuracy almost always
increased with trial length (see Figure 7). In the OMI
condition, however, longer trial lengths rarely led to
improvements in expected selection accuracy.

As described in Section 2.2, trial lengths were selected
to maximize expected ITR based on user-specific calibra-
tion data. As expected, longer trials were associated with
more accurate SSVEP selection (Figure 7). Across all
conditions, expected ITR closely reflects the rate of cor-
rect character selection (see Figure 6), validating it as a
worthwhile objective to maximize.
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Table 4. Selected UX questionnaire results.

Scale Unimpaired (n = 38) VAI (n = 38) OMI (n = 37)

Overall workload 1 = not at all hard work, 25 £ 1.01 24 + 0.86 45 £+ 145
7 = extremely hard work (reference) (p = .7365) (p < .0001)

Overall comfort 1 = not at all tired/uncomfortable, 2.1 + 098 1.9 + 077 25 + 1.04
7 = extremely tired/uncomfortable (reference) (p =.2791) (p = .0085)

Overall satisfaction 1 = extremely satisfied, 20 + 1.04 21118 2.1 +1.18 49 £+ 1.63
7 = extremely unsatisfied (reference) (p = .7505) (p < .0001)

(n =37)? (n = 36)°

*Satisfaction data are missing for one participant each for the unimpaired and OMI conditions due to participants not completing the last page of the form
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Figure 7. Stimulation time vs SSVEP trial accuracy.

4. Discussion

This experiment aimed to demonstrate that Shuffle
Speller, with adaptive stimulus presentation and query-
ing, is a viable interface for typing with SSVEP BCI,
and to examine the effects of simulated visual impair-
ment on Shuffle Speller use. Shuftle Speller was found
to be a satisfactory spelling interface with high accuracy
scores and low reported workload and discomfort.
Healthy individuals with simulated VAI of 20/200
(meeting the U.S. definition of legal blindness [53])
could use Shuffle Speller for SSVEP BCI typing with
accuracy and typing rates comparable to their perfor-
mance with unimpaired vision, and were satisfied with
system performance. Results indicate that individuals
with VAI should not be ruled out as potential SSVEP
BCI users. Shuftle Speller’s key algorithmic advantage is
that it aggregates error-prone user evidence to make a
single, accurate letter selection. However, the Shuffle
Speller interface used in this experiment was specifi-
cally designed to be accessible to users with visual
impairment, with features including large font sizes,
high-contrast text, color and motion cues, and contex-
tual cues from the alphabetical arrangement of

characters. Visual BCI interfaces with other design
characteristics, such as smaller font sizes, may pose
more difficulty for users with VAI Further investiga-
tion is needed to identify optimal interface character-
istics for BCI users with reduced visual acuity. Web
accessibility recommendations [54] may serve as a use-
ful guide.

Some participants could use the system with high
accuracy under a simulated OMI condition, though
with slower typing speeds and increased workload.
Most participants were unable to type under this con-
dition. This variability in inter-participant performance
is consistent with prior simulation results, including
those of Allison and colleagues, who found that differ-
ent participants often had very different SSVEP
responses to the same stimuli, with highly variable
levels of expected online control [22]. The same study
found that users produced much stronger responses to
non-overlapping than overlapping stimuli, underscor-
ing the importance of gaze shifting and overt attention
for many SSVEP BCI users.

Participants who were successful typing under the
OMI condition had longer trial lengths than the full



participant group for that condition, as well as for the
unimpaired and VAI conditions, indicating that Shuffle
Speller’s automatic trial length optimization feature
appropriately adjusted for weak SSVEP signals in
these users. Shuffle Speller’s adaptive querying feature
also compensated for the weak EEG evidence obtained
during the OMI condition, requiring more queries per
letter selection. Participants who could type with
reduced eye movements experienced reduced typing
speeds compared to the other conditions, but similarly
high typing accuracy.

Expected ITR was used as an objective function to
optimize trial length for each participant. In practice
this method will extend trial length for weak user
responses, such those related to OMI, as long as the
extension results in increased accuracy to justify the
slowed typing rate. We expect the strong correspon-
dence between expected ITR and the rate of correct
character selection (see Figure 6) to be present in all
systems which incorporate user evidence probabilisti-
cally. Some BCI systems utilize a decision tree in which
characters not associated with the estimated SSVEP
frequency are pruned away until only one is left. In
these cases expected ITR is a less worthwhile predictor.
There are many other advantages of probabilistic char-
acter inference, as discussed in previous work [26].

Future work will investigate the use of the Shuffle
Speller for SSVEP typing by people with SSPI and OMI.
Additional analyses of eye tracking data for individuals
who were successful in the OMI condition in this study
might provide information about important characteris-
tics of users with OMI. Clinically, this type of informtion
might assist with the person-technology matching pro-
cess for eventual home use of visual BCIs. Individuals
with SSPI and OMI may be more successful with Shuffle
Speller typing than our healthy participants under the
OMI condition, as they may have developed strategies
to compensate for their reduced motility, or be more
skilled at attending to stimuli in their peripheral vision.
They may also experience a different level of workload
associated with system use, since participants in this study
were required to consciously maintain central fixation
during the calibration and spelling tasks, likely adding
to their workload. Individuals with advanced ALS and
reduced eye movement have used a four-class SSVEP BCI
to select among predetermined phrases [23]. Shuffle
Speller may provide such users with a means of typing
novel messages with a similar four-class setup. Shuffle
Speller’s adaptive stimulus presentation and querying
methods are resilient to single-trial errors and designed
to allow typing even with weak EEG evidence, and thus
may support accurate (though slow) communication for
some users with poor ocular motility.
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Future work with Shuffle Speller may explore its
suitability for use with access methods other than
BCI, such as eye tracking, switches, or joysticks,
which can produce weak, inconsistent control signals
for users with unreliable motor function. Shuffle
Speller employs fewer, larger targets than typical AAC
typing layouts, which may increase selection accuracy,
and its adaptive stimulus presentation, integrated lan-
guage model support, and repeated querying may
reduce typing errors even when inaccurate selections
are made on individual queries. Movement-based alter-
native access methods may be preferable to BCI for
users with some motor function; for example, eye
tracking had higher ITR, better usability, and lower
workload ratings compared to a P300-based BCI in
users with motor impairments who were able to use
eye tracking [55]. However, some individuals with SSPI
cannot achieve accurate computer control with existing
eye tracking keyboards. Interfaces that can compensate
for inaccurate or inconsistent control signals are a
valuable area for exploration.

Additionally, options could be explored for increas-
ing Shuftle Speller’s capacity for adaptation to a user’s
needs and abilities. For example, the number, size,
position, or separation of boxes could be modified for
individuals with OMI or visual field cuts. In the current
system configuration, these characteristics would not
be adaptive, as box placement is limited by the fixed
locations of the LED panels. This could be addressed
by presenting SSVEP stimuli directly on the screen
instead of via LED. Customized animation speeds (i.e.
the speeds at which letters travel from one box to
another) or color cues might also be beneficial for
some users, and could be determined during an initial
calibration session.

Results of this study have implications for hard-
ware configuration for SSVEP-based BCIs. Our elec-
trode headband setup, which may be more
convenient and esthetically pleasing than a tradi-
tional EEG cap, collected data of sufficient quality
for control of an SSVEP BCI. Potential users have
expressed concerns about the appearance, setup time,
and messy gel associated with many current EEG-
based BCI systems [48,49]. Until comfortable, effec-
tive dry electrodes are widely available, a system with
a small number of electrodes (requiring fewer wires
and less gel in the hair) and a headband (which
alters the user’s appearance less than a cap) may be
preferred by some SSVEP BCI users. However,
further investigation should be conducted to com-
pare this headband electrode setup to traditional
EEG caps in terms of both data acquisition and
user experience.
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Shuffle Speller shows promise as a visual BCI interface
for individuals with reduced visual acuity, and possibly
for some with ocular motility. Future testing of this and
other modified visual BCI interfaces with people with
SSPI and comorbid visual impairments is recommended,
and such interfaces should be compared with auditory
and tactile BCIs. These explorations must be considered
in the context of other potential comorbidities in the
SSPI population. The impact of cognitive impairment
on BCI performance has not been well explored, and is
a crucial area for future exploration. The complicated
profile of potential end users with both sensory and
cognitive impairments underscores the need for BCI
systems which are flexible and accommodating to a
variety of specialized needs [15].

5. Conclusion

Among healthy participants, simulated VAI did not
cause inferior SSVEP BCI typing performance with
Shuffle Speller. Some users could type accurately,
though slowly, under a simulated OMI condition.
Results suggest that individuals with impaired visual
acuity or ocular motility should not be ruled out as
potential visual BCI users, though interface designs
must accommodate their particular needs. Future
experiments should attempt to replicate these results
among participants with real acuity or motility impair-
ments, and to identify interface design features to
increase BCI usability for these populations.

Note

1. We believe (1) is preferable. Speier et al offer a strong
discussion in [32] (see their definition of Mlp,).
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