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Cerebral Cortex

Table 15.1. Quantitative data on the human cerebral cortex

Volume (both hemispheres) 517 cm® (males)
440 cm® (females)
Surface (both hemispheres) 1470-2275 cm”
&
Depth of neocortex 1.5-5mm _@,

Total number of neurons (both hemispheres) 22.8x 10@
X

Pakkenberg and Gundersen [525]

Blinkov and Glezer [56]
Elias and Schwartz [173]
Pakkenberg and Gundersen [525]

von Economo and Koskinas [796]
Pakkenberg and Gundersen [525]




Human Brain, 14 Weeks to End of Gestation
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Layers of Developing Brain

Nonhuman Primate Brain,
Mid-Gestation
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Neural Proliferation
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Fig. 2.7. Ontogeny of the CNS. The histogenesis of the wall of the neural tube is subdivided into nine phases.
The following developmental events are indicated: Transformation of monolayered neuroepithelium into a
pseudostratified epithelium (1 — 4); increase (2 — 4), culmination (5), decrease (5 — 7) and depletion (8)
of matrix layer; appearance (3) and development (3 — 9) of marginal layer; appearance (5) and expansion
(5 — 9) of mantle layer; appearance of subventricular layer (9). mantle [, mantle layer; marg I, marginal
layer; matrix I, matrix layer; neuroep, monolayered neuroepithelium; subvent [, subventricular layer (modified
from [89] Fig. 33a)



Neural Migration from Ventricular Zones to Cortex
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Temporal Pattern for Cerebral Cortical FA:
Relationship with Morphological Differentiaion

Zervas and Walkley, (1999) J. Comp. Neurol. 330:48-64



Synaptic Pruning in Frontal Human
Cerebral Cortex
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Cerebral Cortical Thickness Changes
Throughout Human Lifespan
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Visual system: Retina -> Thalamus -> Cortex

Lateral geniculate nucleus Striate cortex




Ocular Dominance Revealed by Electrophysiology
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Monocular Deprivation: Cortex Responds to Non-
Deprived Eye

Monocular Deprivation
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Critical Period for Normal Ocular Dominance

Anatomy Physiology
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Critical Period — An Interval of Development in which
Function at Maturity Depends on External Stimuli
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Marin, Nat. Med. 22:1229-1238 (2016)



Interference with Earlier Developmental Processes

> Proliferation >> Mlg:ﬁ%tlon >-




Orbitofrontal cortex

Four Folding Variants in the Human OFC

Approximate location of the OFC shown on a
sagittal MRI

Nakamuraet al., Clin. EEG and Neurosci.51:275-284 (2020)

Orbital surface of left frontal lobe.



Findings from 26 Studies
Comparing Sz, ASD to Controls

Type | pattern represented
with greater frequency in
controls

o
Type lll pattern represented
with greater frequency in Sz
and ASD

Nakamuraet al., Clin. EEG and Neurosci. 51:275-284(2020)

Table 2. Summary Table of Major Findings of Previous Studies.

Study Diagnosis Results (Group Difference)
Chiavaras and Petrides N/A Type | was most commeon and type |Il was least common
(2000) variant (HC).
MNakamura et al (2007) Chronic Sz Sz showed increased type lll and decreased type | in right
OFC dominant.
Makamura et al (2008) Chronic Sz

Chakirova et al (2010)

Roppongi et al (2010)

Uehara-Aoyama et al
(2011)

Whittle et al (2014)

‘Watanabe etal (2014)

artholomeusz et al (2013)

akahashi et al (2014)

Lavoie et al (2014)

Takahashi et al (2015)
Ganella et al (2015)

Nishikawa et al (20186)

Cropley et al (2015)
Yoshimi et al (2016)

Takahashi et al (2016)
Zhang et al (2016)
Takahashi et al (2017)
Isomura et al (2017)
Chye et al (2017)

Patti et al (2017)

Makamura et al (2018)

Delahoy et al (2019)
Takahashi et al (2019)

Li et al (2019)

High genetic risk
of 5z

First episode Sz

Panic disorder

Chronic Sz

N/A

ASD

First episode 5z

Sz

UHR transitioned

UHR
nontransitioned

Sz

EP/ELBWY

Sz

Schizotypal (SFD)

Chronic 5z
Sz

Sz
Schizotypal (SPD)
N/A

Deficit Sz
Mondeficit 5z
Sz

CB user

Sz

Bipclar disorder
ADHD

ARMS

oCcD
ARMS

Sz
PG

Difference between high-risk transitioned and
nentransitioned (decreased type | and increased type Ill).

Difference between FESz and HC (decreased type | and
increased type ll).

No difference

Male Sz showed increased type Ill but not in female Sz.
NFA

ASD showed increased type Il in bilateral OFC. Fewer POS
in ASD.
In right OFC, Sz showed decreased type | and
increased type Il. Fewer |O5 in left OFC of Sz.

UHR transitioned showed reduced type | in right OFC.
UHR transitioned showed fewer 1OS and POS.

In left OFC, EP/ELBVY showed increased type Il and fewer
105 and increased POS.

Sz showed increased type Il and decreased type |. SPD
did not differ from HC. Sz and SPD showed shallower
olfactory sulcus.

Sz showed increased type Il
Sz showed increased type Il

Sz and SPD showed fewer number of 10S and POS.
N/A

Deficit Sz showed decreased type |, increased type Il in
right OFC, and fewer POS as compared with HC.

Female Sz showed decreased type | and increased type |l
No difference

5z and BP showed increased type II/IV and reduced type | in
left OFC.

ADHD group showed a trend-level difference from HC.

ARMS as a whole had fewer number of 105 and POS. No
difference in H-shaped sulci.

No difference

Both ARMS and Sz showed increased type lll in right OFC
and fewer 105 and POS,

PG showed increased type Il in bilateral OFC.
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Animal Model Studies are Critical for Understanding
Biological Mechanisms

Early Gestation Late Gestation Early Postnatal
Glucose provides 80% energy Glucose provides 80% energy Blood glucose drops rapidly
Fatty acids completely maternally derived De novo fatty acids synthesis Fats provide 50% energy
Protein accounts for fetal growth Enhanced w-3 and w-6 demand
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Maternal Obesity Linked to Brain Developmental and
Functional Impairments

 Fetal Brain Ianammation/Actqjvated Microglia
N

«

 Synaptic Development {ég. reduced spine density)

R
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e Specific Effects on Neuromodulatory Circuits

e Accumulating Evidence Implicates Role of Placenta

Shook et al., Prenatal Diagnosis 40:1126-1137 (2020)



Conclusions

e Protracted development of the CNS renders the brain vulnerable to
developmental perturbations @

e Critical periods for CNS development\a@ plasticity may provide insights
for understanding plasticity of othgfrl”organs in DOHaD contexts

* Increasing evidence supports a;?gle of the intrauterine environment
in neurodevelopmentaI/neucrﬁpsychlatrlc disorders

e Current understanding primarily guided by observations of
correlations, but indicate the importance of placental function
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