

Impact of Prematurity on DOHaD Kellen

OHSU DOHaD Summer Course, August 12, 2021

Meredith Kelleher, PhD

Assistant Professor

Division of Reproductive & Developmental Sciences Oregon National Primate Research Center

Objectives

- Recognize the pathophysiological processes and multiple etiologies of 1. preterm birth
- Describe mechanisms of perinatal developmental injury 2.
- Identify experimental evidence and epidemiological links between 3. prematurity and non-communicable diseases of later life Nereditt

Things to consider:

- Separating influence of cause or prematurity from effects of immaturity, low birth weight and medical treatment is very difficult
- Severity of outcomes are greatly affected by gestational age and birthweight but even late preterm/early term delivery are negative

PRETERM BIRTH RATE 10.2%

Social Determinants of Health – Preterm Birth

- Structural, systemic and environmental factors
- Access to prenatal and maternal care
- Socioeconomic status
- Maternal age
- Maternal stress

- Short interpregnancy interval
- Educational status
- Marital status
- Physical work, long hours

Proposed Mechanisms of Spontaneous Preterm Labor

Causes of preterm birth may also differ in incidence by gestational age.

Infection is present in ~40% of births <27 weeks and 15% of births 27-37 weeks gestation.

Preterm Mortality and Morbidity

Cardiometabolic Disease

Prematurity has long-term implications for later life hypertension and cardiovascular disease

Risk of Renal Disease with Prematurity

- Systematic review of over 2 million former low birth weight (LBW) infants (often preterm) concludes an odds ratio of 1.73 to develop chronic renal disease (White, 2009)
- Disrupted organogenesis → reduced kidney size and nephron number with 60% of nephrons formed in the 3rd trimester
 Comparison with the state of th
- Co-morbidities, e.g. placental insufficiency, IUGR and fetal hemodynamic changes, inflammation and ROS also influence organogenesis
- Adaptive microstructural changes in response to disrupted development or insults can include simplification, fibroproliferation and reduced density of capillary networks → predisposes to later chronic kidney disease
- NICU setting → Optimizing cardiorespiratory function, sodium and fluid management and reducing exposure to nephrotoxins (drugs, TPN, hyperoxia and ROS) can improve outcomes and acute kidney injury

Preterm Lungs – RDS and BPD

- Respiratory distress syndrome affects nearly all infants <28weeks gestation; lack of surfactant causes lungs to collapse
- Bronchopulmonary dysplasia is chronic lung disease caused by damage to lungs and alveoli
 - Fewer, enlarged alveoli
 - Less vascularized
 - May have scarring and fibrosis
- Injury during resuscitation and mechanical ventilation
- BPD needs prolonged breathing support and oxygen

Thomas, W., Speer, C.. J Perinatol **27**, S26–S32 (2007).

Chronic Lung Disease

- Infants born <32 weeks gestation are at higher risk of adverse respiratory outcomes and hospitalization into childhood
- BPD, poor growth, infection, inflammation and oxidative stress further increases risk of poor respiratory outcomes into adulthood
- Altered lung structure persists and lung function can decline throughout childhood
- Ex-preterm infants show long-term airflow limitation, decreased gas exchange, increased airway hyperresponsiveness and impaired exercise capacity and are at risk of chronic obstructive pulmonary disease

Neurodevelopmental Disorders of Prematurity

Preterm Brains

- 20-59% of infants born <26 weeks have neurodevelopmental disability
- Even late preterm infants (34-36wks) are at higher risk of cerebral palsy (3x) and academic difficulties compared to full term infants
- Functional outcomes are related to location and severity of the injury
- Cerebral volume (reduced grey and white matter) correlate with later cognitive outcomes in adolescence
- Impaired cognition, neurosensory and motor function (CP) is linked to white matter injury to which the immature brain is particularly vulnerable
- Gestational exposure to stress, environmental toxins or infection and inflammation associated with preterm birth are proposed to interact with genetic and epigenetic factors to predispose to neurobehavioural or neuropsychiatric disorders

Other systems/processes impacted by prematurity

- Endocrine system HPA axis, stress response, tissue, thyroid, adrenal, pancreatic, pituitary, and placental hormones
- hormones
 Immune system increased susceptibility to infection
- Reproductive system reduced or sub- fertility
- Bone mineralization increased osteoporosis risk
- Perinatal microbiome reduced diversity & stability
- Perinatal nutrition and growth

Experimental Model of Preterm Birth Meredin

Intrauterine Ureaplasma infection in an NHP Model

Intrauterine infection and inflammation leads to preterm labor

Ureaplasma Infection and Fetal Lung Injury

- Inflated fetal lung sections at 150dGA
- Thickened septal walls with prolonged intra-amniotic *Ureaplasma* infection
- Increased cellularity in airway spaces
- Predisposes preterm infant to chronic lung disease, BPD and later life sequelae

Fetal Brain Gliosis after intra-amniotic inoculation

Fetal Hemodynamics

- Umbilical artery Doppler reflects downstream vascular resistance within the placenta
- Descending Aorta also had increased PI
- UA PI > 1.1 defined as abnormal in 3rd trimester human pregnancies (Archarya, 2004)

- More animals showed abnormal (reduced) cerebroplacental resistance ratio with infection
- Reduced CPR driven by increased placental resistance rather than reduced middle cerebral artery resistance

Fetal Cardiovascular Dysfunction

Fetal Sequelae of Infection-Associated Preterm Birth

Placental Inflammation

- Influences fetal bloodflow
- Pathology/histology
- Inflammatory gene expression

Fetal Cardiovascular Dysfunction

- Evidence from pPROM + models
- Doppler ultrasound

Fetal Brain

_

-

-

_

Cell death

Astroglia

Microglia

Myelination

- Pulsed Doppler echocardiography

Translational value of maternal-fetal and postnatal NHP studies

- Mechanisms of fetal inflammation and injury
- Applicable to study of developmental disorders, infection and toxicant exposure
- Translational modeling of medical interventions at delivery
- Long-term cognitive, behavioral and functional development

Impact of Prematurity on DOHaD

